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Edoardo Pirovano

Abstract

This project investigates the application of reinforcement learning tech-
niques to the segmentation of medical images. In particular, we present a
novel approach that is based on learning how to grow a selection with
regions obtained from an image partition forest (IPF) based on various at-
tributes of the regions. Our algorithm will be almost automatic, although we
discuss why it cannot be classed as entirely automatic.

We then proceed to quantitatively evaluate this method against two data-
sets of manually segmented femurs in MRI scans of knees and compare its
performance to that of state-of-the-art algorithms. We also discuss advan-
tages that our approach provides, such as achieving results in a much shorter
time and with significantly less expensive data labelling.
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1 Introduction

The problem of segmentation is that of splitting an image into meaningful regions.
In particular, in the context of medical images, this usually means separating out
organs or bone from the surrounding tissues. Closely related is the problem of
feature identification which centres around identifying these regions. In this project,
we will focus on the former problem.

Segmentation is an important problem for many clinical applications. For in-
stance, knowledge of the volumes of tumours can be used by doctors to guide
decisions on treatment and asses the success of such treatments. Additionally, algo-
rithms have been developed to convert scans labelled with locations of organs into
3D meshes [1], allowing doctors to directly visualize a patient’s organs or bone.

The segmentation of femurs, which we will focus on in this project, has appli-
cations to patient-specific instruments (PSI), which take into account the shape of
an individual patient’s knee in knee-replacement surgery, with the aim of improv-
ing postoperative alignment and reducing surgery time [2]. PSI has seen a large
increase in popularity in recent years [3].

Manual segmentation of scans by radiologists is very time-consuming, so much
research attention has been dedicated to developing algorithms to perform segmen-
tation. These can roughly be divided into two types: Semi-automatic algorithms
rely on some user input, whereas automatic ones do not. The algorithm we present
here is almost fully automatic, although we will see in Section 8.2 why it cannot be
fully classed as this.

The rest of this report is organised into eight main sections. Section 2 gives
some background on the ideas underlying our approach. Section 3 presents some
related work. Section 4 describes the design and implementation of our method.
Section 5 describes the data-sets we will use for training and evaluation of our algo-
rithm. Section 6 describes a couple of experiments used to decide some important
parameters for our algorithm. Section 7 contains an evaluation of the effectiveness
of our method on segmenting femurs in scans of knees. Section 8 gives an analysis
of the successes and shortcomings of our approach. Finally, Section 9 gives some
concluding remarks and points out some areas for further work.
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2 Background

2.1 Reinforcement Learning

Reinforcement learning [4] is the problem of learning what decisions (actions) to
take in a given situation (state) to maximise a numerical reward function by a
process of trial-and-error. Depending on the problem and its formulation, the action
taken by the learner (agent) may affect not only the immediate reward but also
subsequent rewards. This interaction between an agent and its environment can be
summarised by Figure 2.1.

Figure 2.1: A diagram showing the interaction between an agent and its environment.
Figure obtained from [4].

While reinforcement learning can be classified as machine learning in the sense
that it “gives computers the ability to learn without being explicitly programmed,”1

it is very different from other types of machine learning.

Most of machine learning relies on statistical pattern recognition while consid-
ering the entirety of a large set of data at once. In contrast, in reinforcement
learning, all the learning occurs from interacting with the environment
and trying different actions.

As a result of this, reinforcement learning can sometimes yield methods that
train more quickly and with significantly less training data (as will be the case in
this project). This is particularly desirable in medical imaging where obtaining
training data is time-consuming and expensive.

One important aspect of reinforcement learning is finding a balance between
exploration (making different choices in order to see how well they work) and ex-
ploitation (making what we believe to be the best choice in order to maximise
reward). One common way of achieving this is by an ε-greedy policy, under which
the agent makes the choice of action it believes to be best with probability 1− ε for
some, usually small, parameter 0 < ε < 1 and otherwise chooses an action uniformly
at random. The parameter ε can be fixed (this will be the case in this project, as
discussed in Section 6.2) or can be made to vary according to some heuristic (for
example, it can decrease as time goes on and our agent has more knowledge).

1The definition of machine learning given by Arthur Samuel, one of the pioneers of the field,
in 1959.
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Reinforcement learning has been successfully applied in many areas including
telecommunications [5], elevator control [6], and games such as Backgammon [7]
and Go [8]. Applying the same techniques to medical imaging is in some respect
more challenging: we have access only to a limited amount of training data and
no way of generating more since we cannot simulate the environment of the agent.
There have nonetheless been some successful applications, which are discussed in
Section 3.2.

2.2 Windowing

The unit recorded by a CT scanner is known as the Hounsfield Unit (HU). HU
values have a very large range, so it is usually impractical to work on them directly.
In order to focus on a smaller sub-section of the values that we are interested in,
we use a windowing for the scan.

A windowing is composed of a window centre and a window width, which define
the centre and size of the range of HU values we are interested in. Together, these
define a piece-wise linear function that re-scales the intensity of each pixel into a
value within our desired range (which throughout this project will be 0 to 255). An
example of this can be seen in Figure 2.2.

MRI scans use different techniques, depending on the type of the scan and its
parameters. Nevertheless, they generate a wide range of intensities, which need to
be windowed in a similar manner.

While techniques exist for automatically choosing windowings for scans, for the
purposes of this project we have selected suitable windowings manually as this
allowed us to obtain better results. Once the work in this project is integrated into
a larger medical image segmentation system, automated windowing will be looked
at as a separate task.

Figure 2.2: An example of how a windowing with a centre of 1500 and a width of 1000
would re-scale HU values into our desired range of 0 to 255.
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2.3 Image Partition Forests

Another key concept used throughout this project is that of Image Partition Forests
(IPFs). A full presentation of IPFs and how they are constructed is beyond the
scope of this report and can be found in [9]. We however give a brief summary here
since they are so central to the project.

An IPF (see Figure 2.3 for an example), is a forest of a chosen fixed depth
constructed from a given image. Nodes in the leaf layer correspond to individual
pixels in the image and nodes in higher up layers represent regions corresponding
to the union of connected nodes below them. Notice that (by the fact the IPF
is a forest) each layer thus corresponds to a “mosaic” that splits the image into a
number of disjoint regions, with higher up layers giving a coarser mosaic.

Although this need not strictly be the case from the definition, the idea of IPFs
is usually to group together pixels that have similar intensities and will likely be
part of the same region in order to aid segmentation.

2.4 OxMedIS

The IPFs used in this project are constructed using OxMedIS,2 a software tool for
segmenting medical images using methods discussed in [9]. The first step in con-
structing an IPF is smoothing the data with several passes of anisotropic diffusion
filter [10], which reduces the effect of noise in the image on the final result.

The segmentation then starts from the leaf layer (which is just every pixel in
the image), repeatedly sets every pixel in each region to the maximum intensity in
that region and then performs a watershed [11] on the transformed image to get the
next layer up. This method can be used on either windowed or unwindowed data,
but in this project we use the windowed data since this yields better results.

2.5 Evaluation Measures

There are many different quantitative measures to evaluate the success of a seg-
mentation [12]. For our purposes, it will suffice to consider just a few of these
(throughout, let MS be a set of pixels denoting a machine segmentation and GT
another set of pixels denoting a gold standard for the scan):

• DSC: We define Dice’s Similarity Coefficient by:

DSC =
2 |MS ∩GT |
|MS|+ |GT |

.

Intuitively, this gives a value between 0 and 1 that is closer to 1 the more
similar MS is to GT .

• TPVF and FPVF: Additionally, let I denote the whole image. Then, the
true positive is given by:

TPVF =
|MS ∩GT |
|GT |

.

2https://www.cs.ox.ac.uk/projects/OxMedIS/
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(a) Leaf Layer (b) First Branch Layer

(c) Second Branch Layer (d) Third Branch Layer

Figure 2.3: Example of the first few layers of an IPF (layers above the third branch
layer are not used in this project since the selections they give are often too coarse to be
useful).
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Similarly, the false positive is given by:

FPVF =
|MS \GT |
|I| − |GT |

.

While slightly less immediately intuitive, together these give us more infor-
mation than DSC since they tell whether we identified too much or too little.

• AvgD: First, for a voxel x and a set of voxels A, let us define:

d(x,A) = min
y∈A

d(x, y),

where d(x, y) is the Euclidean distance between between two voxels. Let us
also define BA to be the boundary of a set of voxels A. Now, we can define
the average symmetric surface distance by:

AvgD =
1

|BMS|+ |BGT |

( ∑
x∈BMS

d(x,BGT ) +
∑

y∈BGT

d(y,BMS)

)
.

• RMSD: Similarly, we can define the root mean square symmetric surface
distance by:

RMSD =

√√√√ 1

|BMS|+ |BGT |

( ∑
x∈BMS

d2(x,BGT ) +
∑

y∈BGT

d2(y,BMS)

)
.

Notice that while DSC, TPVF and FPVF are ratios between 0 and 1, AvgD
and RMSD are physical distances. There are many more measures we do not use
in this report, and much discussion is currently on-going in the literature on which
measures are most appropriate for which studies [13, 14, 15]. DSC is by far the
most frequently encountered in literature, but it has significant shortcomings. For
example, in Figure 2.4 we see two segmentations where the first is significantly more
useful but both have the same DSC.
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(a) First Segmentation (b) Second Segmentation

Figure 2.4: Two segmentations that would be scored the same by DSC and other evalu-
ation measures based on overlap. Figure obtained from [12].
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3 Related Work

In this section, we give a brief summary of work that has already been performed
in the area of segmentation of knees and more generally segmentation based on
reinforcement learning.

3.1 Knee Segmentation

Algorithms exist to segment the various parts of a knee: femur, tibia and cartilage.
We will focus on the problem of segmenting the femur. Current state-of-the-art
knee segmentation algorithms rely on a variety of different methods (and, often,
combinations of several of these), including [9]:

• Thresholding: Selecting precisely those pixels with a certain range of inten-
sity values. An example of this can be seen in Figure 3.1.

• Region Growing: Growing out a selection, starting from either a single
pixel or a group of pixels and adding either a pixel or a group of pixels at a
time, based on a set of criteria.

• Deformable Models: Starting from a model of the feature we wish to iden-
tify (for example, the typical shape of a femur), and then trying to find a
suitable place in our image for it.

• Clustering: Attempting to collect pixels into groups that are similar based
on certain criteria.

• Atlas-based: Constructing a probabilistic map of certain positions being
certain features (based on training data) and then using this to guide segmen-
tation of new images. Crucially, this relies on an aligning step that re-orients
and re-scales the images so that relative positions make sense.

(a) Original Image (b) Threshold-Based Selection

Figure 3.1: Example of a selection created from thresholding an image. Obtained from
Wikimedia Commons (where it was released into public domain).
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As described in Section 4, our algorithm is based on a region growing method
(in some sense combined with the clustering given by an IPF), in which we use
reinforcement learning to learn the criteria for how to expand our region.

We will now briefly outline the results obtained by a few state-of-the-art algo-
rithms to give us something to compare our own results with. It is worth noting
that comparing results across different studies is somewhat challenging because dif-
ferent studies will use different sets of data and evaluation measures. One of the few
publicly available data-sets with evaluation benchmarks is the one from the SKI10
grand challenge, which we will also use and describe in more detail in Section 5.2.
The data-set is fairly challenging to segment in that the images have a low contrast.

One method [16] that works primarily by L0 gradient minimization combined
with several preprocessing and postprocesing steps achieves an average DSC of
0.949±0.015 on a small subset of the SKI10 grand challenge data-set.

Another method [17] that relies on a 3D active shape model initialised using an
atlas achieves a similar average DSC of 0.952±0.072 and AvgD of 0.16mm, though
the data-set used to evaluate this method was likely less challenging.

Another paper [18] using an atlas followed by region adjustment achieves a DSC
of 0.717±0.080 on the SKI10 data-set, which while significantly lower than that
achieved by others [16] is still interesting because its evaluation was carried out on
the whole data-set rather than a selected subset of it.

One paper [19] uses a method based on ray-casting which relies on the decom-
position of the MRI images into multiple surface layers to localize the boundaries
of the bones to achieve a DSC of 0.94±0.05 and an AvgD of 0.19±0.02mm on a
set of 141 MRI scans (again, likely from a less challenging data-set than the SKI10
one).

3.2 Reinforcement Learning-based Segmentation

There have been a number of previous attempts to use reinforcement learning in the
context of image segmentation. One paper [20] tackles the problem of identifying
the prostate in an ultrasound image. This works by splitting the image into various
sub-images and then learning a greyscale value threshold for each sub-image to
determine which pixels to include. Another paper [21] uses a similar method on CT
images of various different body parts.

Yet another paper [22] takes a different approach. Instead of learning how to
segment an image, it instead learns which from a library of standard segmentation
algorithms to use and which parameters to initialize it with.

Here, we have taken a novel approach: we use a user-provided seed
(initial position in the image that is part of our desired region) and
then grow our selection from there adding small regions from the lowest
branch layer of the IPF, with the agent learning which regions should
be included and which should not. We describe our approach in more
detail in the next section (although some details of how the algorithm is
configured are deferred till Section 6).
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4 Design and Implementation

In this section, we will outline the design and implementation of a novel algorithm
for tissue segmentation based on reinforcement learning techniques. We omit code
from here, though the full code for our Scala implementation can be found in Ap-
pendix B and we will occasionally refer to files there in our description.

It is worth noting that while the examples we will see in our evaluation later on
are 2D images, the implementation fully supports 3D volumes as well.

4.1 Design Overview

The basic control flow of our program in a run is shown in Figure 4.1. Essentially,
the image and IPF are read in and parsed, along with a user-provided seed point
in the image that is known to be part of the area we wish to segment.

This seed is then used to pick the corresponding region in the second or third
branch layer of the IPF. Then, our agent keeps considering regions in the first branch
layer that are adjacent to our selection and deciding whether to include them or not
until there are no adjacent regions that we have not already excluded. This uses
an ε-greedy policy for training runs, with a configurable parameter ε, and simply
makes the choice it believes to be best in evaluation runs.

Once our selection is complete, if we are performing a training run we go back
over the decisions that we made and update our policy based on whether they were
correct or not. Finally, we morphologically close our result and then output it,
along with various scores.

4.2 Implementation

We now proceed to describe each of these stages in more detail, along with descrip-
tions of where to find the corresponding code should the reader wish to look in
detail at this.

4.2.1 Input and Preprocessing

If we exclude the seed points and windowings (which are programmed into constants
in the code), there are three inputs to the program: the image to be segmented, its
IPF, and the gold standard to give a score for our result and, in the case of training
runs, train our policy.

In many cases, the reading of the input image is handled by the ImageJ li-
brary [23], although this struggled with MetaImage and RAW files, so a parser for
these was implemented in Raw.scala.

As mentioned in Section 2.4, the IPFs are generated using OxMedIS. The output
from OxMedIS is parsed by our code in IPF.scala. The parser discards some of the
information we are not interested in but stores the information we do want such as
the hierarchy and adjacency graph [24].

The gold standard can also be an image, with white pixels representing the
pixels in the selection and black pixels representing those not. Additionally, there
is limited support for multi-feature selection files exported by OxMedIS. As their
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IPF Image

Gold Standard

Read In and Parse

Expand Selection

Compare Selection

Is Training Run?

Output Result
and Score

get unconsidered adjacent region

include/exclude region

include seed

Update Policy

New Policy

Policy

no regions adjacent to our selection
haven’t been considered yet

No

Yes

Selection

Policy

Figure 4.1: The control flow during a run of our algorithm. Note for simplicity of the
diagram we represent the policy as an immutable file that is input and output each run,
but in practice it is stored in memory and mutated in-between runs. Similarly, the image,
IPF and gold standard are stored in memory between runs for the same image rather than
read in and parsed again each run.
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name suggests, these files can define multiple different feature selections. However,
for simplicity we implemented support only for those that define a single selection.
Parsing of these selections is implemented in MFS.scala.

Before we begin to segment the image, we first window it and compute the
gradients at every point (once again using code from the ImageJ library) to be used
later. This is implemented in WindowedImage.scala.

4.2.2 Segmentation and Learning

We begin our segmentation by selecting a seed point. Then, we find the corre-
sponding region in either the third or second branch layer of the IPF. We use the
third branch layer for evaluation runs, since in all the images encountered in this
project this never resulted in over-selection but did select a suitably large portion
of the region we wished to segment in order to give a good seed. However, we use
the second layer in training runs since this results in more regions being considered
later on and thus improves the amount of learning we can obtain from an image.

The selection is kept track of in Selection.scala. The main loop in RLSegmen-
tation.scala then repeatedly considers regions (in the first branch layer of the IPF
- which is the smallest regions that are not single pixels) adjacent to our selection
for inclusion using the policy in Policy.scala until we have considered and excluded
every region adjacent to our selection.

In training runs, we use an ε-greedy policy (with a configurable parameter ε)
in order to encourage exploration. In evaluation runs, we always make what we
believe to be the best choice. When we have no information about whether to
include a region or not, the agent’s default behaviour is to not include it. This
usually results in better segmentation since if it was desirable to include the region
it is likely that regions surrounding it will be included anyway and a post-processing
step of morphologically closing the result (discussed in Section 4.2.3) will add it to
the selection.

While the seed region is taken in one of the higher up layers, it is important to
note that we then only use the first branch layer of the IPF to grow our selection.
We make this choice since using any layer other than this to expand our selection
with could make it impossible to achieve high segmentation accuracies on images
where the higher up layers of the IPF contain regions that are only partly in the
area we wish to select. While this could in theory also be an issue with the first
branch layer, it is not in practice.

This problem could be avoided by giving the agent a third choice of action (in
addition to including or excluding the region) when it is considering a region not in
the first branch layer that allows it to split the region into its children and consider
these separately. This possibility is left for future work, as discussed in Section 9.2.

Which information about the region is used by the agent when deciding whether
or not to include it can be adjusted, and it is possible that different types of images
will work better with different choices of information. We discuss various possibili-
ties and evaluate their success in Section 6.1. For training runs, this information is
cached across runs so we avoid recomputing it.

Once the segmentation process is complete, we go back over all our decisions and
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(a) Original Image (b) Selection Before Closing (c) Selection After Closing

Figure 4.2: Example of a selection before and after applying morphological closing.
Figure obtained (with the author’s permission) from [25].

update the policy, giving a reward for each decision made. The reward is based on
the number of voxels in the region that were correctly classified (each correct voxel
gets a score of +1, and each incorrect one a score of -1). Thus, correct decisions get
an overall positive reward, and incorrect ones a negative one.

4.2.3 Postprocessing and Outputting

We apply a further step of morphologically closing the segmentation result. This
adds to our selection any regions that are surrounded by selected regions, thus
ensuring the selection does not contain any holes (which can occur due to, for ex-
ample, noise in the image). An example of this can be seen in Figure 4.2. Morpho-
logical closing is implemented in SegmentationResult.scala using the MorphoLibJ
library [26].

Having done this, we compute DSC, TPVF and FPVF scores for the result and
output them (this is done in RLSegmentation.scala). We also save a black and white
image of the selection, with white representing voxels that our algorithm believes
to be part of the selection. This saving is again handled by ImageJ.

4.3 Adapting to Other Tissues

This algorithm has been designed with the segmentation of femurs from MRI scans
of knees in mind, as this is what our evaluation (in Section 7) focussed on. Nonethe-
less, it is likely that the same algorithm could be used to identify other features
with only minor modifications to the code.

In particular, the criteria considered by our agent for deciding whether to in-
clude or exclude regions are hard-coded (in RLSegmentation.scala) as the maximum
gradient and average intensity of the region since (as discussed in Section 6.1) these
gave the best results for segmenting femurs. However, other criteria might work
better for different tissues so an adaptation would likely require changing these.
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5 Materials

In this section, we describe the data-sets we had access to, which will be used
both for some experiments to select a suitable configuration for our algorithm (in
Section 6) and for our evaluation (in Section 7).

5.1 Botnar Research Centre Data

The first data-set we used was obtained from the Botnar Research Centre (part
of the Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal
Sciences at Oxford). As described in [27, 28], the data consists of 18 knee MRI
sequences taken with a Philips Achieva TX 3.0T MRI system, with a T1W contrast
enhanced Turbo Spin Echo (TSE) sequence, with no fat suppression. The scans are
saggital, meaning that the slices are taken in the plane that divides the body into
right and left sides. The pixel spacing was 0.3mm by 0.3mm, and the slice thickness
was 2.5mm (hence, the data is anisotropic3).

The scans were taken at the Botnar Research Centre in the Nuffield Orthopaedic
Centre using the standard sequence employed in clinical practice within the UK’s
National Health Service. All scans were right knees of females with an average age
of 49 (range: 31-63 years). Patients had been diagnosed with either a meniscal tear
or patello-femoral arthritis. All scans were anonymised and were subject to ethical
approval for use in research.

Of the 17 scans, we used a total of 10 and took a slice near the middle of the
femur (see Figure 5.1 for an example) for each one. These 10 slices were then
split into 5 training images and 5 evaluation images. The evaluation images were
chosen to be those where the IPF gave a poor segmentation of the knee, since these
highlighted improvements resulting from the learning.

Some of the patients had undergone surgery (for example, patient 2 had an
implant attached to their femur). In these cases, the slices chosen from their scans
were ones where there was no obvious resection or implants.

For all the chosen images, gold standards were made manually (by the author)
and these were used for either training or evaluation. In Appendix A.1, we outline
which slices were used and the windowing and seed point chosen for each.

3In this context anisotropic means not equally sized in all dimensions. In particular, in most
medical images the distance between two slices of a scan is not equal to (usually larger than) the
distance between the pixels within the slices.
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Figure 5.1: An example slice from the Botnar data-set. In particular, this is slice 11 of
image 3, which we used as our second evaluation image.
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5.2 SKI10 Grand Challenge Data

The second set of data was obtained from the SKI10 grand challenge, a world-wide
competition in knee segmentation [29] associated with MICCAI, a top international
imaging conference. The data-set is designed to present difficulties for many algo-
rithms. As described in the paper setting out the competition, the data consists
of 150 MRI scans of knees, which were acquired from a large number of different
centres (over 80), using various machines and settings. The images come with gold
standard segmentations made manually by experts at Biomet, Inc.

It is worth noting that all the images were used for surgery planning of partial
or complete knee replacement and thus the segmentation accuracy is usually much
higher in the part of the knee relevant to the surgery and less so in the rest.

All images were acquired in the sagittal plane (as with the Botnar data) with a
pixel spacing of 0.4mm by 0.4mm and a slice distance of 1mm. No contrast agents
were used which, as we will see in our evaluation, makes automatic segmentation
much more difficult. Field strength was 1.5T in about 90% of the cases, the rest
was acquired mostly at 3T, with some images acquired at 1T. The employed MRI
sequences show a huge variety: the vast majority of images used T1-weighting, but
some were also acquired with T2-weighting.

As with the Botnar data, we selected 10 individual slices near the middle of the
femur (see Figure 5.2 for an example) from 10 different images. The scans we used
and accompanying parameters are described in Appendix A.2.

The selected scans were chosen to be the ones with slightly better contrast than
the others, although as we see in our evaluation they still presented more difficulty
than the Botnar data.
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Figure 5.2: An example slice from the SKI10 data-set. In particular, this is slice 83 of
image 52, which we used as our third evaluation image. Notice the lower resolution (the
image is 301x347 pixels rather than 512x512) and poorer contrast between the bone and
surrounding tissue compared to the example image from the Botnar data-set (Figure 5.1).

Page 24 of 75



5 MATERIALS Edoardo Pirovano

5.3 X-Ray Data

Scans (whether MRI or CT) are expensive, take a long time and require sophisti-
cated devices. In contrast, X-Ray machines are ubiquitous and acquire data signif-
icantly faster. While some conditions require detailed investigations with 3D scans
to diagnose, others can be diagnosed from X-Rays. Therefore, it would be desirable
for our method to also be effective on X-Rays.

For a small test on X-Rays we acquired three similar X-Ray images of a knee,
shown in Figure 5.3. The images were provided already windowed, so selecting
windoweings was not necessary. Unlike the Botnar and SKI10 scans, these images
are coronal, meaning that the plane they are taken in corresponds to that dividing
the back and front of the patient’s body. These were manually segmented by the
author to produce gold standards used for training and evaluation.

While this may appear to be a very limited amount of data, we will see in
Section 7.3 that it will be enough to show that our method does not immediately
transfer to X-Ray images due to the lower contrast between bone and the surround-
ing tissue in them compared to MRI scans.
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(a) Training Image X (b) Training Image Y (c) Evaluation Image Z

Figure 5.3: The three X-Ray images used.
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6 Parameter Selection

6.1 Choice of Inclusion Criteria

As discussed in Section 4, the segmentation program can be configured to present
various different criteria to the agent when deciding whether or not to include a
region into the segmentation. In particular, we will consider criteria based on two
important characteristics of pixels:

• Intensity: The brightness of the pixel in the image, after our windowing has
been applied. This will be in a range of 0 to 255.

• Gradient: For each pixel we can compute gradients by taking the derivative
of the intensity values at that point (this is the change in intensity between
the pixels either side divided by two), again after windowing, in each direction
(as illustrated in Figure 6.1). We reduce these two (or three when working
on voxels in 3D scans rather than single slices) components to one value by
taking the largest. This will be in a range of 0 to 127.

We then have a choice of how to go from these values for individual pixels to
an aggregated value for the entire region in the IPF. For this we consider taking
the minimum, average or maximum for intensity and the average or maximum for
gradient (minimum gradient is not a very useful measure since it is expected that
within a region there will be areas with very similar intensity values making this
always close to 0). Another interesting possibility could be considering the gradient
only on the boundary of the region, but we leave this for future work.

When deciding how much information to present the agent, there is a certain
trade-off. Presenting more information could allow the agent to make better deci-
sions. However, it also increases the size of the state space, thus requiring a larger
training data-set to encounter a large enough portion of the states to make the
policy learnt effective.

Given the amount of training data we had available, presenting a pair of the
values discussed above struck a good balance. This gives an upper bound on the

(a) Original Image (b) X Gradient (c) Y Gradient

Figure 6.1: An image and its corresponding gradient images. Obtained from Wikimedia
Commons (where it was released into public domain).
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Min Intensity Max Intensity Avg Grad Max Grad
Avg Intensity 0.707 0.751 0.743 0.971
Min Intensity - 0.720 0.731 0.940
Max Intensity - - 0.738 0.952

Avg Grad - - - 0.837
Max Grad - - - -

Table 6.1: Mean DSC of a segmentation of the evaluation set after training on the
training set, according to different choices of pairs of inclusion criteria.

number of different states of 2562 = 65536. Because of dependencies between the
different values, this upper bound is only theoretically possible for some pairs of
values (for instance, minimum intensity and maximum intensity) and even then is
extremely unlikely to occur in practice when working on medical images.

Then, it remained to decide what two values to consider. For this, we designed
a small experiment. We took a set of 10 slices of scans with their corresponding
gold standards from the Botnar Research Centre data (as described in Section 5.1)
and split them into two equally sized sets: a training set, and an evaluation set.

We trained our agent on the training set (running it 40 times with ε = 1⁄10
on each image, as justified in the next section) and then ran it on our evaluation
set and calculated the mean DSC of the results (as described in Section 2.5). We
repeated this for a variety of different inclusion criteria. Our results are recorded
in Table 6.1.

It is worth noting a few limitations of this experiment. Firstly, a different
choice of evaluation measure might have given a different result. As such, if we
were particularly interested in getting the best results under a certain measure (for
example, if we wanted to keep false positive to a minimum), it would be beneficial
to repeat this experiment with that measure. We chose to consider DSC since it is
the most widely used in the literature.

Secondly, the results might have changed if we had used a different data-set. In
particular, different inclusion criteria may be more or less useful depending on the
parameters the scans were taken with or the feature that we are trying to segment
(for instance, if we were trying to segment organs in a CT scan instead of bones in
an MRI scan). Additionally, different sized data-sets might give different results:
one choice of inclusion criteria might perform better with a smaller data-set (like
ours) while another might do better when there is more data available to train on.

Nonetheless, we conclude that in our particular scenario the optimal choice of
criteria is average intensity and maximum gradient. This choice makes sense because
a high average intensity would tell us that the region is primarily bone and thus
should be included, while a high maximum gradient would tell us that the region
includes the boundary between the bone and the surrounding soft tissue and thus
should not be included.

From this point in the report onwards, we fix our inclusion criteria as
average intensity and maximum gradient.
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6.2 Choice of ε and Number of Training Runs

It is worth giving a justification of our choice of ε and the number of training runs
per image, which are (along with the choice of what criteria consider when deciding
which regions to include/exclude) the other ways the algorithm can be configured.

Recall from Section 2.1 that the parameter 0 < ε < 1 controls how much an
agent following an ε-greedy policy will attempt actions it does not believe to be
optimal: the agent makes the choice of action it believe to be best with probability
1− ε and otherwise chooses an action uniformly at random.

For the purpose of choosing ε and the number of training runs, we ran our
segmentation algorithm (once again, on the data from the Botnar Research Centre,
as described in Section 5.1) with each of a variety of choices for them.

Again, the results show a mean DSC on the evaluation set after learning on
the training set. Because of the high randomness involved with some choices of
parameters, we ran this experiment 10 times for each configuration and took a
mean of these means. These results can be seen in Table 6.2.

As with our previous experiment, the results and conclusions drawn here should
be taken with a pinch of salt, since they are specific to a certain choice of evaluation
measure and data-set.

The choice of ε is quite delicate. Choosing a large value like 1⁄2 means we can
quickly (even with only a couple of runs per image) get sensible results. However,
it also means that we will sometimes consider regions far from the femur, reducing
the overall quality of the policy we learn since it will include information about
regions that are not relevant.

On the other hand, choosing a small value like 1⁄100 means we will need many
training runs before we reach a sensible policy. This is because the agent will be
reluctant to attempt to include new regions, resulting in learning taking more time.

So as a compromise we use an intermediate value of 1⁄10. This is large enough to
consistently give good results even with a relatively small number of training runs
but not so large that it causes us to consider many irrelevant regions and learn a
poor policy.

While smaller values likes 1⁄20 and 1⁄40 seem slightly more promising from the
results in this section, we avoid them because they make learning less consistent
since on particularly unlucky runs we might never consider important regions and
end up learning a poor policy.

Notice that because of the non-determinism involved, a larger number of training
runs does not always improve results so the DSC is not strictly increasing as we vary
the number of training runs. Nonetheless, we can see that it does overall increase
with the number of training runs, roughly stabilizing after around 40 runs (hence
our choice of this).

From this point in the report onwards, we fix ε = 1⁄10 and 40 training
runs per image.
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Number of Training Runs

2 5 10 20 40 100

ε

1
2

0.789 0.831 0.838 0.826 0.823 0.827
1
5

0.918 0.932 0.934 0.932 0.936 0.931
1
10

0.918 0.947 0.956 0.959 0.963 0.957
1
20

0.953 0.956 0.969 0.970 0.972 0.969
1
40

0.939 0.963 0.946 0.956 0.973 0.969
1

100
0.927 0.942 0.923 0.936 0.937 0.930

Table 6.2: Mean DSC of a segmentation of the evaluation set after training on the
training set, with a varying ε and number of runs.

Page 30 of 75



7 EVALUATION Edoardo Pirovano

7 Evaluation

7.1 Results on Botnar Data

Before Training After Training
DSC TPVF FPVF DSC TPVF FPVF

Training

A 0.830 0.710 0.000 0.998 0.996 0.000
B 0.999 0.998 0.000 0.994 0.999 0.002
C 0.998 0.996 0.000 0.999 0.997 0.000
D 0.763 0.617 0.000 0.999 0.998 0.000
E 0.864 0.760 0.000 0.998 0.998 0.000

Evaluation

F 0.657 0.489 0.000 0.971 0.944 0.000
G 0.678 0.512 0.000 0.959 0.922 0.000
H 0.762 0.616 0.000 0.969 0.939 0.000
I 0.734 0.579 0.000 0.988 0.976 0.000
J 0.566 0.395 0.000 0.975 0.952 0.000

(a) Full Results

Before Training After Training
DSC TPVF FPVF DSC TPVF FPVF

Training Set 0.891 0.816 0.000 0.998 0.998 0.000
Evaluation Set 0.679 0.518 0.000 0.972 0.947 0.000

(b) Mean Results

Table 7.1: Results for the Botnar data-set (images A-J).

Having fixed all configurable parameters of our algorithm, we now give a more
thorough evaluation of our algorithm’s performance, once again on the data from
the Botnar Research Centre described in Section 5.1. Notice that since this is the
same data we used to configure our algorithm in Section 6, there may be some bias
in our configuration that makes it particularly suited to this data. However, this
will not be the case for the data discussed in the next sections.

In Figure 7.1 we can see the learning in action for the first knee in the training
data. Notice the occasional upward jumps in the false positive (and corresponding
drops in DSC) when the ε-greedy policy randomly decides to try to include a new
region that is not part of the knee. The results for the other training images are
similar, although they have better starting positions due to previous learning (this
is good, but also makes the graphs less interesting to look at since there is less
improvement to be made).

In Table 7.2 we can see a part of the policy learnt by our agent. Notice how,
as expected, a high maximum gradient leads to the region being less likely to be
included. The relationship between average intensity and inclusion is less obvious
from this fragment but from the whole data it can also be seen to be as expected
(higher intensities lead to higher likelihood of inclusion).

It is interesting to note that while this was chosen from a part of the policy where
most of the states had been encountered, very few of the theoretically possible values
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Figure 7.1: The change in various evaluation measures over the course of 10 training
runs on the first knee in the data-set. Notice the evaluation measures settle close to 1
(100%) after a few runs.

Maximum Gradient (Range: 0–127)
. . . . . . . . . . . . . . . . . . . . .
. . . 107 108 109 110 111 . . .
129 Unseen Include Exclude Exclude Include . . .
130 Include Include Include Include Exclude . . .
131 Include Include Include Exclude Exclude . . .
132 Include Include Include Exclude Exclude . . .

Average Intensity
(Range: 0–255)

133 Exclude Include Exclude Include Exclude . . .
. . . . . . . . . . . . . . . . . . . . .

Table 7.2: A part of the policy of whether or not to include regions learned by the agent
after training on the Botnar data-set. The full table is 32640 cells big.
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for intensity and maximum gradient are actually encountered in real images - only
around 8% (of the 32640 possible combinations) were encountered in the training
data-set.

This does not necessarily mean the images did not contain regions with these
values, but merely that our agent never considered those regions (since it will in
most cases never explore very far from the femur). This highlights one of the
advantages reinforcement learning gives over more conventional statistical machine
learning techniques - we only consider the parts of the data that are useful to our
agent’s decision making and, thus, can train faster.

In Table 7.1 we can see the success of the segmentation before and after training
(the values for before training correspond simply to the seed region in the IPF, since
initially the agent will choose to not include any regions it has no knowledge about),
as measured by a number of the evaluation measures defined in Section 2.5.

Reassuringly, all but one image had a better segmentation after training than
before. The only exception is training image B, which has a slight drop in DSC
(from an already very good 0.999 to a still quite good 0.994). This is due to the
inclusion of a small region that should not have been included (as shown by the
FPVF going up from 0 to 0.002), due to a region with the same maximum gradient
and average intensity being desirable to include in one of the other images.

This highlights a limitation of our method that means it can never achieve a
perfect segmentation: if two regions are indistinguishable by these two properties
and one should be included and the other should not, the algorithm will always
incorrectly classify one. While this case is rare in this sequence of scans, we will
see it causes more issues in sequences of scans with poorer contrast like the ones
in the next section. It will also make analysis of X-Rays infeasible, as discussed in
Section 7.3.

The improvement in the evaluation data-set is very good: the average true
positive increases from 0.518±0.086 to 0.998±0.020, with false positive remaining
at 0. One example showing this improvement can be seen in Figure 7.2. It is worth
noting, however, that the evaluation data-set was picked to be the images where the
IPF gives a poorer segmentation in order to highlight improvements resulting from
the learning. Had the data-sets been switched around, the improvement would be
less noticeable.

Of particular interest is the average DSC we can achieve on an unseen image
after training. This is 0.972±0.009, which is comparable to that achieved by cur-
rent state-of-the-art algorithms presented in Section 3.1. As we will discuss in
Section 9.1, our method also offers a number of advantages compared to many of
these.
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(a) Image (b) Gold Standard

(c) Before Training (d) After Training

Figure 7.2: Evaluation image E of the Botnar data-set, its gold standard segmentation
and its machine segmentations before and after training.
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7.2 Results on SKI10 Data

Before Training After Training
DSC TPVF FPVF DSC TPVF FPVF

Training

M 0.864 0.765 0.002 0.970 0.954 0.003
N 0.740 0.588 0.000 0.954 0.971 0.019
P 0.784 0.651 0.003 0.881 0.986 0.067
Q 0.920 0.885 0.012 0.924 0.970 0.041
R 0.971 0.949 0.002 0.976 0.970 0.005

Evaluation

S 0.497 0.332 0.002 0.880 0.815 0.012
T 0.474 0.311 0.000 0.967 0.960 0.008
U 0.518 0.350 0.001 0.952 0.915 0.002
V 0.524 0.355 0.000 0.810 0.695 0.005
W 0.682 0.518 0.001 0.845 0.947 0.083

(a) Full Results

Before Training After Training
DSC TPVF FPVF DSC TPVF FPVF

Training Set 0.856 0.768 0.004 0.941 0.970 0.027
Evaluation Set 0.539 0.373 0.001 0.891 0.866 0.022

(b) Mean Results

Table 7.3: Results for the SKI10 data-set (images M-W).

Having seen our algorithm perform well on some fairly uniform data from a clinical
study, we now consider its performance on more demanding data from the SKI10
grand challenge [29], as described in Section 5.2. Once again, we select 10 slices
from the data, and split these into two groups of 5, one of which is used for training
and the other for evaluation. Our results are presented in Table 7.3.

The data presents a number of challenges that the data from the Botnar Research
Centre did not. Firstly, the scans are much less uniform, having probably been
taken with different machines or at least very different configurations of the same
machine. Secondly, all the images are much lower resolution. Lastly, the contrast
on the images is much poorer, making it more difficult to distinguish bone from soft
tissue even with a good choice of windowing.

As expected, the results are significantly worse, with the lower contrast leading
to a large increase in false positive (see Figure 7.3 for an example of this), even in the
training data. This is a limitation of the method on the whole: more training data
would not improve this. Nonetheless, training still gives an improvement over just
selecting a region in the IPF: the average DSC of a segmentation on the evaluation
data-set improves from 0.539±0.082 to an acceptable (although somewhat inferior
to current state-of-the-art algorithms) 0.891±0.067.

It is worth noting that because the tuning of our parameters in Section 6 (inclu-
sion criteria, choice of ε and training runs) was not done using this data-set, there
is also perhaps room for improvement by changing those.
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(a) Image (b) Gold Standard

(c) Before Training (d) After Training

Figure 7.3: Evaluation image E of the SKI10 data-set, its gold standard segmentation
and its machine segmentations before and after training. This shows one of the issues
caused by the low contrast of the data-set: the agent decides to include the region in the
top right since the change in intensity is not enough to distinguish it from the bone.
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7.3 Investigation Into Other Data Types

Before Training After Training
DSC TPVF FPVF DSC TPVF FPVF

Training
X 0.911 0.841 0.001 0.980 0.968 0.001
Y 0.938 0.888 0.002 0.984 0.982 0.005

Evaluation Z 0.888 0.798 0.000 0.636 0.915 0.265

Table 7.4: Results for our X-Ray data (images X-Z).

Having seen our method work successfully on MRI scans, we decided to carry out
a small investigation to verify whether or not our technique would carry over easily
to other types of scans. For this, we used our algorithm on the three X-Ray images
described in Section 5.3. Our results are shown in Table 7.4.

These results show us that our method does not immediately work on X-Ray
scans. The problem is that the low contrast inherent to X-Rays does not lend
itself to our method as we cannot distinguish regions that are part of the femur or
not based solely on average intensity and maximum gradient. So, we will learn to
include a region that in another image we would not want to include. This problem
can be seen in Figure 7.4. More training data would not address this problem, since
there would still be contradictions in the regions that should and should not be
included based on their intensity and gradient.

This shows that some modification of our method is needed to make it effective
on different types of scans. It is likely that by obtaining more X-Ray data and
carrying out an experiment similar to that in Section 6.1, perhaps with some more
different choices of criteria, our method could be adapted to work on X-Ray scans.
We leave this extension for future work.
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(a) Image (b) Gold Standard

(c) Before Training (d) After Training

Figure 7.4: Results of the evaluation image for our X-Ray data.
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8 Critical Analysis

8.1 Paucity of Data

The aim of our experiments was to show that method works in the sense that we
get sensible results even with a small data-set. To give a fair comparison of our
method to state-of-the-art algorithms, we would need a much larger training and
evaluation data-sets.

This was not feasible because, as discussed in the next section, there are several
non-trivial manual steps that make analysing the entirety of a large data-set, like
the one from the SKI10 competition, impractical. In future work, removing these
manual steps would allow us to analyse our method’s performance with a larger
data-set.

8.2 Extent of Automation

While our algorithm is largely automatic, it does unfortunately include a few non-
trivial manual steps (which is why the sets of training and evaluation data used
are relatively small). The most significant manual step is choosing a windowing for
each of the images being analysed. This is important for two reasons. Firstly, the
windowing needs to make the boundary of the femur distinguishable by providing
enough contrast between it and the background. Secondly, it needs to make the
greyscale values for the femur and background across images in the training and
evaluation data consistent so that the learning can be effective.

Whilst this may appear to be a very severe limitation since it makes the method
much less automatic, it is not as much of a problem in a clinical setting as it may
initially appear. This is because clinicians will usually order scans from the same
machine with the same settings for many patients. So, once a good windowing
has been chosen for one such scan, the same windowing will be effective for many
others. Nonetheless, it makes analysing the entirety of a large data-set with scans
coming from many different machines (like the data from the SKI10 competition)
impractical.

Another limitation of our implementation is that it relies on a user-provided seed
to start the region growing from. It should be possible to automate the process of
choosing this seed by selecting a position in roughly the correct part of the image
that is within the correct range of intensity values, in a way similar to [30].

We leave this extension for future work. It is also worth noting that, in practice,
when the data is acquired from the same source even just simple constants will
often work. For example, in almost all scans from the Botnar Research Centre the
point (200, 200, 10) was in the femur (admittedly, while this makes it an acceptable
seed, it certainly does not make it the best one).
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(This page is intentionally left blank to present the data in
the following sub-section next to the text discussing it)
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8.3 Brief Comparison to SKI10 Competitors

In this section, we will compare our algorithm’s performance on the SKI10 chal-
lenge data (as summarised in Section 7.2) to the algorithms that were entered for
the competition. While the competition opened in 2010 and most entries were
submitted then, it is still open, with some entries being submitted as recently as
2016.

Before we begin this discussion, it is worth noting that all the comparisons made
here should be taken with a pinch of salt because (due to the fact that, as discussed
in the previous section, each scan has to be manually windowed and a seed point
chosen) we only worked on 10 slices rather than the full data-set of 150 scans (each
containing about 100 slices, which would have to be processed separately rather
than as a 3D volume since the data is anisotropic).

This likely made our results worse than they could be, since the size of the
training data-set is significantly smaller. However, it is also possible that the smaller
data-set failed to highlight issues in our method. Additionally, the slices we worked
on were all close to the middle of the femur where the contrast between bone and
tissue is larger, likely improving our results.

Having said this, it is nonetheless interesting to compare our algorithm’s perfor-
mance to others in the SKI10 challenge (a summary of the top scores can be found
in Table 8.1).4 For this, it is necessary to calculate our performance in terms of
the AvgD and RMSD measures (as defined in Section 2.5) used for placing partic-
ipants in the challenge. These were calculated using the code provided as part of
the competition and are given in Table 8.2.

Of particular interest is the average of these measures for the unseen evaluation
data-set after training, which are 0.79±0.99mm and 2.62±9.61mm, respectively
(this would place us around 15th out of the 21 participants in the competition). If
we were to exclude the problematic image E, which has particularly poor contrast
leading to a large false positive (as shown in Figure 7.3) they would improve to
0.38±0.39mm and 1.31±1.38mm, which would place us around 5th. Unfortunately,
the large variance means our results are not very statistically significant.

It is interesting to note that the spread between our AvgD scores and our RMSD
scores is much larger than any of the submissions in the competition. This is due to
the fact that when our algorithm performs poorly (as in Figure 7.3), it overselects
very far in one area and performs acceptably in the rest. This is punished more
severely by the RMSD metric than the AvgD one. It is possible that a further
post-processing step could remove these regions where we have overselected. We
discuss this in Section 9.2.

While our method does not outperform most of the entries to the competition,
it still offers a number of advantages. We discuss some of these in the next section.

4Full results, along with references to corresponding papers where these are available, can be
found at http://www.ski10.org/results.php
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Team AvgD (mm) RMSD (mm)
Imorphics 0.42 0.74

ZIB 0.57 0.88
UPMC IBML 0.63 1.05

SNU SPL 0.70 1.09
Biomediq 0.77 1.45

UPMC IBML 0.66 1.06
shan unc 0.76 1.22

AMC MIRL 0.67 1.13
UIiibiKnee 0.72 1.17
shan unc 0.78 1.25

Table 8.1: Mean scores for femur segmentation for the top 10 teams in the SKI10
challenge.

Before Training After Training
AvgD (mm) RMSD (mm) AvgD (mm) RMSD (mm)

Training

M 0.706 2.454 0.019 0.130
N 1.944 4.739 0.323 2.014
P 2.174 6.013 2.256 7.854
Q 0.213 1.053 0.349 1.855
R 0.023 0.162 0.016 0.117

Evaluation

S 6.615 10.903 0.932 2.984
T 6.154 10.446 0.035 0.239
U 7.993 14.151 0.170 0.976
V 4.422 7.962 0.375 1.033
W 2.344 5.099 2.460 7.857

(a) Full Results

Before Training After Training
AvgD (mm) RMSD (mm) AvgD (mm) RMSD (mm)

Training Set 1.012 2.884 0.593 2.394
Evaluation Set 5.506 9.712 0.794 2.618

(b) Mean Results

Table 8.2: Our results for the SKI10 data-set in terms of AvgD and RMSD evaluation
measures used as a standard in the challenge.
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9 Conclusion

9.1 Discussion of Main Advantages

One advantage of our algorithm is that it has a very short run-time if we already have
an IPF: on a standard laptop (Intel i7-4980HQ 2.80GHz processor, 16GB RAM) our
fairly unoptimised Scala implementation takes a couple of hundred milliseconds to
process a single slice, so would likely take about 10 seconds to process a whole scan
(a more optimised implementation in a lower-level language could probably take
half this time). This is much quicker than every entry in the SKI10 competition
that reported a running time (these ranged from about 30 seconds to 40 minutes
per scan). Even if we include the time needed to build an IPF (about 15 minutes),
this is still faster than most entries.

Additionally, our algorithm needs significantly less training data than traditional
machine learning approaches, as evidenced by the fact that competitive results were
obtained on the SKI10 data using just five slices of the gold standards. In contrast,
the leading entry in the competition used 80 scans [31]. This is crucial because
clinician time is expensive, so being able to perform well with only a limited amount
of hand-contoured data is very useful.

Finally, there are differences in knee anatomy between patients based on race and
gender [32]. This can lead to algorithms that use techniques based on probabilistic
maps or deformable models (most of the entries in the competition) exhibiting bias
based on the data they have been trained on. However, this should not be an issue
for our algorithm, since we rely solely on the intensity values of the scan, which
should not vary significantly across patients.

9.2 Future Work

One potential area for future improvement in our method would be in some further
post-processing steps (in addition to morphological closing) to improve the result.
Most notably, anti-aliasing to smooth the outline of the result would probably be
desirable.

Another post-processing step could attempt to identify places where our selec-
tion “bled” into neighbouring regions of similar intensity (as occurred in Figure 7.3)
and remove these. This identification could be based on regions that are poorly con-
nected to the rest of the selection, or perhaps on statistical information about knee
shape.

Another potential improvement would be using information beyond the intensity
and gradient in the agent’s decision to include or exclude regions, which would
perhaps improve results on images with poorer contrast.

One possible idea for this would be to add a measure of how closely connected
our region is to those that we have already included, the reasoning being that we
are more likely to want to include regions that are closely connected to those we
already present.

However, this has the downside that we will need to consider some regions many
times (rather than at most once) since we may want to later include a region that
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we previously excluded based on other nearby regions now being included. This
will likely greatly increase the run-time of the algorithm.

Another area our algorithm could perhaps be improved is by changing how the
IPF it relies on is constructed. In particular, the IPF construction depends on the
data being smoothed by several passes of an anisotropic diffusion filter. Changing
the number of passes will change how coarse or fine the regions in the first branch
layer are and tuning this might improve results.

As previously discussed, it might also be helpful to grow our selection using
layers higher up in the IPF rather than always using the first branch layer. This
would certainly allow for faster segmentation since it would reduce the number of
regions we need consider. However, this could be at the expense of segmentation
accuracy since the regions being added will be coarser. To avoid this issue, it could
be beneficial to give the agent a third option (in addition to including/excluding a
region): to split up a region and consider its children separately.

A further extension of our method could also consider varying the value of
ε based on some heuristic instead of having it fixed. In particular, it might be
beneficial to reduce it as more training has occurred (this could be measured by,
for instance, the number of distinct regions that we have encountered).

A limitation of our evaluation is that we chose to perform it only on 2D slices of
images, rather than on 3D images (though it is worth noting that the implementa-
tion fully supports 3D images). This is primarily because we did not have access to
any isotropic data and some concepts our method relies on do not readily translate
to anisotropic images.

In particular, gradients become significantly more complicated to calculate and
reason about and the concept of voxels being adjacent is meaningless if the slices
are too far apart. In addition, constructing the required IPFs for 3D images is a
more time-consuming process (with each IPF taking around 15 minutes to compute
on a modern laptop).

Thus, we leave evaluation of our algorithm on 3D images for future work. It is
expected that, similarly to other algorithms [16], our performance will be good in
the middle layers, where the contrast between the femur and background is good
but less so in the outside layers.

Another extension to the evaluation could include attempting to segment dif-
ferent features such as, for example, organs in an abdominal scan. It is likely that
results will be worse here, since organs have much lower HU values than bone, so
they are harder to distinguish from the soft tissue around them.

Having performed a more thorough evaluation of our algorithm, we will submit
a paper for publication in the SPIE Medical Imaging Conference.
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A Data Parameters

In this appendix we give the details of which slices we used from each of the data-
sets, along with what seed point and windowings we chose for each one.

A.1 Botnar Research Centre Data

Window
Image Scan # Slice Seed C W

Training

A 1 10 (200, 200) 1214 2408
B 10 10 (200, 200) 1050 2050
C 11 9 (200, 200) 1100 2200
D 12 10 (200, 200) 1050 2050
E 13 10 (200, 200) 1050 2050

Evaluation

F 2 6 (200, 150) 1325 1604
G 3 11 (200, 200) 1126 2231
H 5 9 (200, 200) 1275 2500
I 6 11 (200, 200) 1200 2400
J 7 11 (200, 150) 1050 2050

Table A.1: Details of the images used from the Botnar data and parameters used.

A.2 SKI10 Grand Challenge Data

Window
Image Scan # Slice Seed C W

Training

M 4 66 (100, 100) 416 781
N 15 70 (150, 100) 251 492
P 41 59 (100, 140) 79 150
Q 42 61 (100, 100) 492 985
R 50 64 (100, 100) 64 128

Evaluation

S 39 69 (100, 100) 64 127
T 46 69 (100, 100) 870 1493
U 52 83 (100, 100) 162 321
V 54 75 (100, 100) 598 1012
W 60 76 (100, 100) 415 830

Table A.2: Details of the images used from the SKI10 data and parameters used.
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B Code

This appendix includes all the code written for the project, with each subsection
corresponding to a different package (except the first, which corresponds to the SBT
build file).6 In total, there are just over 1100 lines of Scala code.

B.1 build.sbt

1 lazy val commonSettings = Seq(

2 organization := "org.edoardo",

3 version := "1.0.0",

4 scalaVersion := "2.12.1"

5 )

6

7 resolvers +=

8 "ImageJ Releases" at

"http://maven.imagej.net/content/repositories/releases/"↪→

9

10 lazy val root: Project = (project in file(".")).

11 settings(commonSettings: _*).

12 settings(

13 name := "RL Segmentation",

14 scalaSource in Compile := baseDirectory.value / "src",

15 maxErrors := 20,

16 pollInterval := 1000,

17 scalacOptions += "-deprecation",

18 fork := true,

19 javaOptions += "-Xmx4G",

20 libraryDependencies +=

21 "log4j" % "log4j" % "1.2.15" excludeAll(

22 ExclusionRule(organization = "com.sun.jdmk"),

23 ExclusionRule(organization = "com.sun.jmx"),

24 ExclusionRule(organization = "javax.jms")

25 ),

26 libraryDependencies += "net.imglib2" % "imglib2" % "3.2.1",

27 libraryDependencies += "net.imglib2" % "imglib2-algorithm" % "0.6.2",

28 libraryDependencies += "net.imglib2" % "imglib2-ij" % "2.0.0-beta-35",

29 libraryDependencies += "fr.inra.ijpb" % "MorphoLibJ_" % "1.3.2",

30 libraryDependencies += "com.google.guava" % "guava" % "21.0"

31 )

B.2 rl

B.2.1 Policy.scala

1 package org.edoardo.rl

2

3 import scala.collection.concurrent.TrieMap

4 import scala.util.Random

5

6 /**

7 * Abstract class to represent a state.

8 * @tparam T class of the actions that are performed from this state

6An electronic copy can also be found at https://github.com/EdoDodo/rl-segmentation
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9 */

10 abstract class State[T <: Action] {

11 def getAvailableActions: List[T]

12 }

13

14 /**

15 * Trait to represent an action.

16 */

17 trait Action

18

19 /**

20 * Class to represent a policy.

21 * @tparam A the type of actions the agent can perform under this policy

22 * @tparam S the type of states the agent can encounter under this policy

23 */

24 class Policy[A <: Action, S <: State[A]] {

25 /**

26 * Create a mapping for storing estimated values.

27 */

28 var values: TrieMap[S, TrieMap[A, (BigDecimal, Long)]] = TrieMap()

29

30 /**

31 * Return a random action with probability 1/epsilonReciprocal or the greedy

action otherwise.↪→

32 * @param state the state to consider

33 * @param epsilonReciprocal the reciprocal of epsilon that we want

34 * @return the action chosen

35 */

36 def epsilonSoft(state: S, epsilonReciprocal: Int): A =

37 if (Random.nextInt(epsilonReciprocal) == 0) randomPlay(state)

38 else greedyPlay(state)

39

40 /**

41 * Choose a random action to play.

42 * @return a random action

43 */

44 def randomPlay(state: S): A = Random.shuffle(state.getAvailableActions).head

45

46 /**

47 * Choose the greedy action to play.

48 * @param state the state to consider

49 * @return the current greedy action from the given state

50 */

51 def greedyPlay(state: S): A = {

52 if (!haveEncountered(state)) state.getAvailableActions.head

53 else values(state).maxBy(_._2._1)._1

54 }

55

56 /**

57 * Update the policy by adding an observed reward for a given play.

58 * @param state the state the play was made from

59 * @param action the action performed

60 * @param reward the reward obtained

61 */

62 def update(state: S, action: A, reward: Double): Unit = {
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63 var map: TrieMap[A, (BigDecimal, Long)] = values.getOrElseUpdate(state, {

64 val result: TrieMap[A, (BigDecimal, Long)] = new TrieMap()

65 for (a <- state.getAvailableActions)

66 result += ((a, (BigDecimal(0.0), 0L)))

67 result

68 })

69 val old: (BigDecimal, Long) = map(action)

70 map += ((action, (((old._1 * old._2) + reward) / (old._2 + 1), old._2 + 1)))

71 values += ((state, map))

72 }

73

74 /**

75 * Check if a state has been encountered before.

76 * @param state the state to check

77 * @return whether or not we have seen this state before

78 */

79 def haveEncountered(state: S): Boolean = {

80 if (values.get(state).isDefined) true

81 else false

82 }

83

84 /**

85 * Clear the policy, forgetting everything learnt.

86 */

87 def clear(): Unit = {

88 values = TrieMap()

89 }

90 }

B.3 parser

B.3.1 Parser.scala

1 package org.edoardo.parser

2

3 import java.io.InputStream

4

5 /**

6 * Abstract class containing a few helper methods used in classes that

implement Parsers.↪→

7 */

8 abstract class Parser {

9 /**

10 * Read a line and check it has a certain value (throwing an exception if

this is not the case).↪→

11 * @param value the value the line should have

12 * @param in the input stream to read the line from

13 */

14 def checkLineIs(value: String)(implicit in: InputStream): Unit = {

15 val line: String = readLine

16 if (line != value)

17 throw new IllegalArgumentException("File is not a valid: Expected " +

value + " but got " + line)↪→

18 }

19

20 /**
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21 * Read a line from an input stream

22 * @param in the input stream to read from

23 * @return the line read

24 */

25 def readLine(implicit in: InputStream): String = {

26 var out = ""

27 var b: Int = in.read

28 while (b != 0xA) {

29 out += b.toChar

30 b = in.read

31 }

32 out

33 }

34 }

B.3.2 IPF.scala

1 package org.edoardo.parser

2

3 import java.io.{BufferedInputStream, FileInputStream, InputStream}

4

5 import scala.collection.mutable

6

7 /**

8 * Describes a pixel (leaf node) of the IPF.

9 */

10 case class PixelProperties(baseValue: Int, gradientMagnitude: Int, greyValue:

Int, parent: Int)↪→

11

12 /**

13 * Describes a branch node of the IPF.

14 */

15 case class Node(centroid: (Float, Float, Float), maxGrey: Int, meanGrey: Float,

minGrey: Int, xMin: Int, yMin: Int,↪→

16 zMin: Int, xMax: Int, yMax: Int, zMax: Int, voxelCount: Int, children:

List[Int], parent: Int)↪→

17

18 /**

19 * Describes the leaf layer of an IPF.

20 */

21 case class LeafLayer(sizeX: Int, sizeY: Int, sizeZ: Int, pixelInfo:

Array[Array[Array[PixelProperties]]],↪→

22 regionToPixels: mutable.Map[Int, List[(Int, Int, Int)]])

23

24 /**

25 * Describes a branch layer of an IPF.

26 */

27 case class BranchLayer(nodes: mutable.Map[Int, Node], edges: mutable.Map[Int,

List[(Int, Int)]])↪→

28

29 /**

30 * Describes an IPF and contains helper methods for accessing useful properties

of it.↪→

31 * @param width the width of the image

32 * @param height the height of the image

33 * @param depth the depth of the image

Page 53 of 75



B CODE Edoardo Pirovano

34 * @param leafLayer the leaf layer of the IPF

35 * @param branchLayers the branch layers of the IPF

36 */

37 case class VolumeIPF(width: Int, height: Int, depth: Int, leafLayer: LeafLayer,

branchLayers: List[BranchLayer]) {↪→

38 /**

39 * Get all pixels in a region, which is assumed to be in the first branch

layer.↪→

40 * @param region the identifier for the region

41 * @return a list of pixels in the region

42 */

43 def getRegionPixels(region: Int): List[(Int, Int, Int)] = {

44 leafLayer.regionToPixels(region)

45 }

46

47 /**

48 * Get all pixels in a region, in the given layer

49 * @param layer the layer of the IPF the region is in

50 * @param region the identifier for the region

51 * @return a list of pixels in the region

52 */

53 def getRegionPixels(layer: Int, region: Int): List[(Int, Int, Int)] = {

54 var regions: List[Int] = List(region)

55 for (i <- 0 until (layer - 1)) {

56 var newRegions: List[Int] = List()

57 for (region <- regions)

58 newRegions = newRegions ++ branchLayers(branchLayers.length - layer +

i).nodes(region).children↪→

59 regions = newRegions

60 }

61 regions.flatMap(region => getRegionPixels(region))

62 }

63

64 /**

65 * For a given seed point and layer, find the corresponding region and then

return a list of all layer 1 children↪→

66 * of this seed region (used to initialise a selection).

67 * @param layer the layer to look in

68 * @param x the x coordinate of the seed

69 * @param y the y coordinate of the seed

70 * @param z the z coordinate of the seed

71 * @return a list of layer 1 children of the selected seed reigon

72 */

73 def getRegionsInLayer(layer: Int, x: Int, y: Int, z: Int): List[Int] = {

74 if (layer == 1) return List(leafLayer.pixelInfo(x)(y)(z).parent)

75 var regions: List[Int] = getRegionInLayer(layer, x, y, z).children

76 for (i <- branchLayers.length - layer + 1 until branchLayers.length - 1)

77 regions = regions.flatMap(r => branchLayers(i).nodes(r).children)

78 regions

79 }

80

81 /**

82 * Find which region contains a point in a given layer of the IPF.

83 * @param layer the layer to look in

84 * @param x the x coordinate to look at
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85 * @param y the y coordinate to look at

86 * @param z the z coordinate to look at

87 * @return the identifier corresponding to the region at (x, y, z) in the

given layer↪→

88 */

89 def getRegionInLayer(layer: Int, x: Int, y: Int, z: Int): Node = {

90 var region: Node =

branchLayers.last.nodes(leafLayer.pixelInfo(x)(y)(z).parent)↪→

91 for (i <- 2 to layer)

92 region = branchLayers(branchLayers.length - i).nodes(region.parent)

93 region

94 }

95

96 /**

97 * Find all neighbours of a region (assumed to be in the last branch layer).

98 * @param region the region identifier

99 * @return a list of region identifiers of neighbouring regions

100 */

101 def getNeighbours(region: Int): List[Int] = {

102 branchLayers.last.edges(region).map(edge => edge._1)

103 }

104

105 /**

106 * Find the z coordinate of a given region (assumed to be in the last branch

layer).↪→

107 * Note this assumes the IPF is an axial one (ie. has been made with separate

forests for each X-Y slice).↪→

108 * @param region the region identifier

109 * @return the z coordinate of the region

110 */

111 def getZ(region: Int): Int = {

112 getRegionPixels(region).head._3

113 }

114 }

115

116 /**

117 * Implements a parser for an IPF.

118 */

119 object IPF extends Parser {

120

121 /**

122 * Read an IPF from a file.

123 * @param fileName the file to read from

124 * @return the IPF in the file

125 */

126 def loadFromFile(fileName: String): VolumeIPF = {

127 implicit val in = new BufferedInputStream(new FileInputStream(fileName))

128 checkLineIs("VolumeIPF")

129 checkLineIs("{")

130

131 val sizeLine: Array[String] = readLine.drop(1).dropRight(1).split(", ")

132

133 val leafLayer: LeafLayer = readLeafLayerSection()

134

135 val topLayer: Int = readLine.toInt
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136 var branchLayers: List[BranchLayer] = List()

137 for (i <- 1 to topLayer)

138 branchLayers ::= readBranchLayer()

139

140 checkLineIs("}")

141

142 VolumeIPF(sizeLine(0).toInt, sizeLine(1).toInt, sizeLine(2).toInt,

leafLayer, branchLayers)↪→

143 }

144

145 private def readBranchLayer()(implicit in: InputStream): BranchLayer = {

146 checkLineIs("ImageBranchLayer")

147 checkLineIs("{")

148

149 var stop = false

150 val nodes: mutable.Map[Int, Node] = mutable.Map.empty

151 while (!stop) {

152 val line: String = readLine

153 if (line == "|") stop = true

154 else {

155 val node: Int = line.toInt

156 val properties: Array[String] =

readLine.drop(2).dropRight(2).split("\\|")↪→

157 val centroid: Array[String] =

properties(0).drop(1).dropRight(1).split(",")↪→

158 checkLineIs("{")

159 var stopInner = false

160 var children: List[Int] = List()

161 while (!stopInner) {

162 val innerLine: String = readLine

163 if (innerLine == "}") stopInner = true

164 else children ::= innerLine.toInt

165 }

166 val parent: Int = readLine.toInt

167 nodes.put(node, Node((centroid(0).toFloat, centroid(1).toFloat,

centroid(2).toFloat),↪→

168 properties(1).toInt, properties(2).toFloat, properties(3).toInt,

properties(4).toInt,↪→

169 properties(5).toInt, properties(6).toInt, properties(7).toInt,

properties(8).toInt,↪→

170 properties(9).toInt, properties(10).toInt, children, parent))

171 }

172 }

173

174 val edges: mutable.Map[Int, List[(Int, Int)]] = mutable.Map.empty

175 stop = false

176 while (!stop) {

177 val line: String = readLine

178 if (line == "}") stop = true

179 else {

180 val split: Array[String] = line.drop(1).dropRight(1).split(", ")

181 val fromAndTo: Array[String] = split(0).drop(1).dropRight(1).split(" ")

182 edges.put(fromAndTo(0).toInt,

183 (fromAndTo(1).toInt, split(1).toInt) ::

edges.getOrElseUpdate(fromAndTo(0).toInt, List()))↪→
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184 edges.put(fromAndTo(1).toInt,

185 (fromAndTo(0).toInt, split(1).toInt) ::

edges.getOrElseUpdate(fromAndTo(1).toInt, List()))↪→

186 }

187 }

188

189 BranchLayer(nodes, edges)

190 }

191

192 private def readLeafLayerSection()(implicit in: InputStream): LeafLayer = {

193 checkLineIs("ImageLeafLayer")

194 checkLineIs("{")

195 val sizeX: Int = readLine.trim.split(" = ")(1).toInt

196 val sizeY: Int = readLine.trim.split(" = ")(1).toInt

197 val sizeZ: Int = readLine.trim.split(" = ")(1).toInt

198 checkLineIs("|")

199

200 var stop = false

201 val pixelProperties: Array[Array[Array[PixelProperties]]] =

Array.ofDim[PixelProperties](sizeX, sizeY, sizeZ)↪→

202 val parentRegionToPixels: mutable.Map[Int, List[(Int, Int, Int)]] =

mutable.Map.empty↪→

203 var x = 0

204 var y = 0

205 var z = 0

206 while (!stop) {

207 val line: String = readLine

208 if (line == "}") stop = true

209 else {

210 val properties: Array[String] = line.drop(1).dropRight(1).split("\\|")

211 val parent: Int = readLine.toInt

212 pixelProperties(x)(y).update(z,

213 PixelProperties(properties(0).toInt, properties(1).toInt,

properties(2).toInt, parent))↪→

214 parentRegionToPixels.put(parent, (x, y, z) ::

parentRegionToPixels.getOrElseUpdate(parent, List()))↪→

215 x += 1

216 if (x == sizeX) {

217 x = 0

218 y += 1

219 if (y == sizeY) {

220 y = 0

221 z += 1

222 }

223 }

224 }

225 }

226

227 LeafLayer(sizeX, sizeY, sizeZ, pixelProperties, parentRegionToPixels)

228 }

229 }

B.3.3 MFS.scala

1 package org.edoardo.parser

2
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3 import java.io.{BufferedInputStream, FileInputStream}

4

5 import org.edoardo.segmentation.SegmentationResult

6

7 /**

8 * Implements a parser for a Multi Feature Set (MFS), which describes

selections in an IPF. Note we make the simplifying↪→

9 * assumption that there is only one feature in the image, and it is called

"Level Set 0"↪→

10 */

11 object MFS extends Parser {

12

13 /**

14 * Load a MFS from a file.

15 * @param fileName the file to load the MFS from

16 * @param ipf the IPF corresponding to the MFS we are loading

17 * @return a segmentation result containing the region described by the MFS

18 */

19 def loadFromFile(fileName: String, ipf: VolumeIPF): SegmentationResult = {

20 implicit val in = new BufferedInputStream(new FileInputStream(fileName))

21 checkLineIs("MFS Text 0")

22 checkLineIs("{")

23 checkLineIs("Level Set 0")

24 checkLineIs("{")

25

26 var done = false

27 var regions: List[(Int, Int)] = List()

28 while (!done) {

29 val line: String = readLine

30 if (line == "}")

31 done = true

32 else {

33 val splitLine: Array[String] = line.split(",")

34 regions ::= (splitLine(0).drop(1).toInt,

splitLine(1).dropRight(1).toInt)↪→

35 }

36 }

37

38 checkLineIs("}")

39

40 val result: Array[Array[Array[Boolean]]] = Array.fill[Boolean](ipf.width,

ipf.height, ipf.depth)(false)↪→

41 for ((x, y, z) <- regions.flatMap(region => ipf.getRegionPixels(region._1,

region._2)))↪→

42 result(x)(y)(z) = true

43 new SegmentationResult(result)

44 }

45 }

B.4 image

B.4.1 Raw.scala

1 package org.edoardo.image

2

3 import java.io.{BufferedInputStream, File, FileInputStream}
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4

5 import com.google.common.io.LittleEndianDataInputStream

6 import ij.process.ImageProcessor

7 import ij.{IJ, ImagePlus}

8

9 /**

10 * Provides a few methods for working with Raw image files.

11 */

12 object Raw {

13 sealed trait ByteType

14 case object UCHAR extends ByteType

15 case object USHORT extends ByteType

16

17 /**

18 * Read the image described by the given metadata file.

19 * @param name the name of the metadata file for a Raw image

20 * @param layer the layer to read (or -1 to read all layers)

21 * @return the image read

22 */

23 def openMetadata(name: String, layer: Integer): ImagePlus = {

24 val (width, height, depth, dataFile, byteType) = readMetadata(name)

25 assert(byteType == USHORT)

26 implicit val in = new LittleEndianDataInputStream(new

BufferedInputStream(new FileInputStream(dataFile)))↪→

27 val image: ImagePlus = IJ.createImage(name, "16-bit", width, height, if

(layer == -1) depth else 1)↪→

28 for (z <- 0 until depth) {

29 for (y <- 0 until height) {

30 for (x <- 0 until width) {

31 val intensity: Short = in.readShort()

32 if (layer == -1 || z == layer)

33 image.getProcessor.putPixel(x, y, intensity)

34 }

35 }

36 if (layer == -1)

37 image.setZ(image.getZ + 1)

38 }

39 image

40 }

41

42 /**

43 * Open a label image (contains 1 for marked voxels, 0 for unmarked ones).

44 * @param name the name of the label image to open

45 * @return an image containing white for marked voxels and black for unmarked

ones↪→

46 */

47 def openLabels(name: String): ImagePlus = {

48 val (width, height, depth, dataFile, byteType) = readMetadata(name)

49 implicit val in = new LittleEndianDataInputStream(new

BufferedInputStream(new FileInputStream(↪→

50 if (new File(name).getParent == null) dataFile else new

File(name).getParent + "/" + dataFile)))↪→

51 val labels: ImagePlus = IJ.createImage(name, "8-bit", width, height, depth)

52 for (z <- 1 to depth) {

53 labels.setZ(z)
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54 val processor: ImageProcessor = labels.getProcessor

55 for (y <- 0 until height) {

56 for (x <- 0 until width) {

57 val value: Short = if (byteType == USHORT) in.readShort else

in.readByte↪→

58 processor.putPixel(x, y, if (value == 1) 255 else 0)

59 }

60 }

61 }

62 labels

63 }

64

65 /**

66 * Read metadata from a metadata file.

67 * @param name the name of the metadata file

68 * @return a tuple containing, in order, the width of the image, the height

of the image, the depth of the image,↪→

69 * the name of the file containing the image data, the type of the

each voxel in the image data↪→

70 */

71 def readMetadata(name: String): (Int, Int, Int, String, ByteType) = {

72 var width = 0

73 var height = 0

74 var depth = 0

75 var dataFile = ""

76 var byteType: ByteType = USHORT

77 for (line <- scala.io.Source.fromFile(name).getLines().map(line =>

line.split(" = "))) {↪→

78 if (line(0) == "DimSize") {

79 val dims: Array[String] = line(1).split(" ")

80 width = dims(0).toInt

81 height = dims(1).toInt

82 depth = dims(2).toInt

83 }

84 if (line(0) == "ElementDataFile")

85 dataFile = line(1)

86 if (line(0) == "ElementType")

87 byteType = line(1) match {

88 case "MET_UCHAR" => UCHAR

89 case "MET_USHORT" => USHORT

90 case "MET_SHORT" => USHORT

91 case _ => throw new IllegalArgumentException("Byte type of MHD file

unsupported: " + line(1))↪→

92 }

93 }

94 (width, height, depth, dataFile, byteType)

95 }

96

97 /**

98 * Read a short from an input stream.

99 * @param in the stream to read from

100 * @return the short read

101 */

102 def readShort(implicit in: LittleEndianDataInputStream): Int = in.readShort

103 }
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B.4.2 WindowedImage.scala

1 package org.edoardo.image

2

3 import ij.process.ImageProcessor

4 import ij.{IJ, ImagePlus}

5 import net.imglib2.FinalInterval

6 import net.imglib2.‘type‘.numeric.integer.UnsignedByteType

7 import net.imglib2.algorithm.gradient.PartialDerivative

8 import net.imglib2.algorithm.pde.PeronaMalikAnisotropicDiffusion

9 import net.imglib2.img.Img

10 import net.imglib2.img.array.ArrayImgFactory

11 import net.imglib2.img.display.imagej.ImageJFunctions

12 import net.imglib2.util.Intervals

13 import net.imglib2.view.Views

14 import org.edoardo.segmentation.SegmentationResult

15

16 import scala.Array.ofDim

17

18 /**

19 * A class storing a windowed image and providing some operations on it.

20 *

21 * @param originalImage the original image

22 * @param windowing the windowing to apply in the form of (centre, width)

or (0,0) to not perform windowing↪→

23 */

24 class WindowedImage(val originalImage: ImagePlus, val windowing: (Int, Int) =

(0, 0)) {↪→

25 val width: Int = originalImage.getWidth

26 val height: Int = originalImage.getHeight

27 val depth: Int = originalImage.getDimensions()(3)

28

29 val image: ImagePlus = IJ.createImage("windowed", "8-bit", width, height,

depth)↪→

30

31 for (z <- 1 to depth) {

32 image.setZ(z)

33 originalImage.setZ(z)

34 for (x <- 0 until width; y <- 0 until height) {

35 if (windowing != (0, 0))

36 image.getProcessor.putPixel(x, y,

37 127 + Math.round(255 * ((originalImage.getPixel(x, y)(0) -

windowing._1).toFloat / windowing._2)))↪→

38 else

39 image.getProcessor.putPixel(x, y, originalImage.getPixel(x, y)(0))

40 }

41 }

42

43 val wrapped: Img[UnsignedByteType] = ImageJFunctions.wrapByte(image)

44

45 val diffusionFilter = new PeronaMalikAnisotropicDiffusion(wrapped, 0.13, 30)

46 for (i <- 0 until 3)

47 diffusionFilter.process()

48

49 val dimensions: Int = if (depth == 1) 2 else 3
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50 val processors: Array[ImageProcessor] = (0 until depth).map(z =>

image.getImageStack.getProcessor(z + 1)).toArray↪→

51 var gradientProcessors: Array[Array[ImageProcessor]] = _

52

53 /**

54 * Get the intensity of a given voxel.

55 *

56 * @param x the x coordinate of the voxel

57 * @param y the y coordinate of the voxel

58 * @param z the z coordinate of the voxel

59 * @return the intensity at (x, y, z)

60 */

61 def getVoxel(x: Int, y: Int, z: Int): Int = processors(z).getPixel(x, y)

62

63 /**

64 * Do any required preprocessing on the image before it can be used.

65 */

66 def doPreProcess(): Unit = {

67 computeGradientImage()

68 }

69

70 /**

71 * Convert this image (with white representing voxels chosen, and black

representing voxels not chosen) to a↪→

72 * segmentation result.

73 *

74 * @param stayInLayer the layer to remain in, or -1 to consider every layer

75 * @return a segmentation result corresponding to convering this image

76 */

77 def toSegmentationResult(stayInLayer: Int): SegmentationResult = {

78 if (stayInLayer == -1) {

79 val result: Array[Array[Array[Boolean]]] = ofDim[Boolean](width, height,

depth)↪→

80 for (x <- 0 until width; y <- 0 until height; z <- 0 until depth)

81 result(x)(y)(z) = getVoxel(x, y, z).equals(255)

82 new SegmentationResult(result)

83 } else {

84 val result: Array[Array[Array[Boolean]]] = ofDim[Boolean](width, height,

1)↪→

85 for (x <- 0 until width; y <- 0 until height)

86 result(x)(y)(0) = getVoxel(x, y, stayInLayer).equals(255)

87 new SegmentationResult(result)

88 }

89 }

90

91 /**

92 * Get the maximum of the two (or three) gradients at a given point in the

image.↪→

93 *

94 * @param x the x coordinate of the point

95 * @param y the y coordinate of the point

96 * @param z the z coordinate of the point

97 * @return the maximum gradient in x oe y direction at the given point

98 */

99 def getGradient(x: Int, y: Int, z: Int): Int = {
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100 (0 until 2).map(dir => gradientProcessors(dir)(z).getPixel(x, y)).max

101 }

102

103 private def computeGradientImage(): Unit = {

104 val gradients: Img[UnsignedByteType] = new

ArrayImgFactory[UnsignedByteType]().create(↪→

105 if (dimensions == 2) Array(width, height, 2)

106 else Array(width, height, depth, dimensions), new UnsignedByteType())

107 val gradientComputationInterval: FinalInterval = Intervals.expand(wrapped,

-1)↪→

108 for (d <- 0 until dimensions)

109 PartialDerivative.gradientCentralDifference(wrapped,

110 Views.interval(Views.hyperSlice(gradients, dimensions, d),

gradientComputationInterval), d)↪→

111 val gradientImage: ImagePlus = ImageJFunctions.wrap(gradients,

image.getShortTitle + "-gradients")↪→

112 gradientProcessors = (0 until dimensions).map(dir => {

113 (0 until depth).map(z => gradientImage.getImageStack.getProcessor((dir *

depth) + z + 1)).toArray↪→

114 }).toArray

115 }

116 }

B.5 segmentation

B.5.1 RegionInfo.scala

1 package org.edoardo.segmentation

2

3 import org.edoardo.rl.{Action, State}

4

5 /**

6 * Represents the possible actions for agent.

7 * @param include whether the action was to add a region or exclude it

8 */

9 case class Decision(include: Boolean) extends Action

10

11 /**

12 * Represents the possible states for the agent.

13 * @param info the information corresponding to region on which the agent

should base its decision to include or exclude↪→

14 */

15 case class RegionInfo(info: List[Int]) extends State[Decision] {

16 /**

17 * Gives the actions available for a region, which are always to include or

exclude it.↪→

18 * @return the actions available for a region

19 */

20 override def getAvailableActions: List[Decision] = List(Decision(false),

Decision(true))↪→

21 }

B.5.2 SegmentationResult.scala

1 package org.edoardo.segmentation

2
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3 import ij.io.FileSaver

4 import ij.process.ImageProcessor

5 import ij.{IJ, ImagePlus}

6 import inra.ijpb.morphology.{GeodesicReconstruction, GeodesicReconstruction3D}

7

8 /**

9 * Stores the result of a segmentation and provides a few methods for working

with it.↪→

10 * @param selected an array containing which voxels were selected

11 */

12 class SegmentationResult(selected: Array[Array[Array[Boolean]]]) {

13 val width: Int = selected.length

14 val height: Int = selected(0).length

15 val depth: Int = selected(0)(0).length

16

17 /**

18 * Morphologically close the result stored by this object.

19 */

20 def closeResult(): Unit = {

21 val result: ImagePlus = buildResult()

22 val closedResult: ImagePlus = IJ.createImage("closedResult", "8-bit", width,

height, depth)↪→

23 if (depth > 1)

24 closedResult.setStack(GeodesicReconstruction3D.fillHoles(result.getImageStack))

25 else

26 closedResult.setProcessor(GeodesicReconstruction.fillHoles(result.getProcessor))

27 for (z <- 0 until depth) {

28 closedResult.setZ(z + 1)

29 for (y <- 0 until height; x <- 0 until width)

30 selected(x)(y)(z) = closedResult.getPixel(x, y)(0) == 255

31 }

32 }

33

34 /**

35 * Build up an image of the result stored by this object.

36 * @param value the value to put for pixels that are set (defaults to 255)

37 * @return an image corresponding to the result, with selected pixels white

and the rest black↪→

38 */

39 def buildResult(value: Int = 255): ImagePlus = {

40 val result: ImagePlus = IJ.createImage("result", "8-bit", width, height,

depth)↪→

41 for (z <- 1 to depth) {

42 result.setZ(z)

43 val processor: ImageProcessor = result.getProcessor

44 for (y <- 0 until height; x <- 0 until width) {

45 if (doesContain(x, y, z - 1))

46 processor.putPixel(x, y, value)

47 else

48 processor.putPixel(x, y, 0)

49 }

50 }

51 result

52 }

53
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54 /**

55 * Build a result image and write it out to a file, overwriting it if it

already exists.↪→

56 * @param fileName the name of the file to write the result image to

57 * @param saveAsRaw whether to save the results as a RAW file (will be saved

as TIFF otherwise)↪→

58 */

59 def writeTo(fileName: String, saveAsRaw: Boolean): Unit = {

60 if (!saveAsRaw) new FileSaver(buildResult()).saveAsTiff(fileName + ".tiff")

61 else new FileSaver(buildResult(1)).saveAsRaw(fileName + ".raw")

62 }

63

64 /**

65 * Check if a given voxel is in the selection.

66 * @param x the x coordinate

67 * @param y the y coordinate

68 * @param z the z coordinate

69 * @return whether or not the given voxel is in the selection

70 */

71 def doesContain(x: Int, y: Int, z: Int): Boolean = selected(x)(y)(z)

72 }

B.5.3 Selection.scala

1 package org.edoardo.segmentation

2

3 import org.edoardo.parser.VolumeIPF

4

5 import scala.collection.mutable

6

7 /**

8 * Keeps track of a growing selection and provides methods to include or

exclude regions and find out which regions (if↪→

9 * any) still need to be considered for inclusion.

10 * @param height the height of the image this selection is in

11 * @param width the width of the image this selection is in

12 * @param depth the depth of the image this selection is in

13 * @param ipf the IPF we are using for the image

14 * @param stayInLayer whether or not we should remain in the layer we start in

15 */

16 class Selection(val height: Int, width: Int, depth: Int, ipf: VolumeIPF,

stayInLayer: Boolean) {↪→

17 val toConsider: mutable.Set[Int] = mutable.Set[Int]()

18 var toConsiderQueue: mutable.Queue[Int] = mutable.Queue[Int]()

19 val excluded: mutable.Set[Int] = mutable.Set[Int]()

20 val included: mutable.Set[Int] = mutable.Set[Int]()

21 var firstZ: Int = -1

22

23 /**

24 * Check if we have finished considering regions.

25 * @return whether or not we have finished considering regions

26 */

27 def completed(): Boolean = toConsider.isEmpty

28

29 /**
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30 * Get a region that we still need to consider. Note this should only be

called if completed() is false.↪→

31 * @return a region that still needs considering

32 */

33 def getRegion: Int = {

34 val result: Int = toConsiderQueue.dequeue()

35 toConsider.remove(result)

36 result

37 }

38

39 /**

40 * Add a region to our selection, and add its neighbours to the regions we

need to consider (if they have not↪→

41 * already been included or excluded).

42 * @param region the region to add to our selection

43 */

44 def includeRegion(region: Int): Unit = {

45 included += region

46 for (neighbour <- ipf.getNeighbours(region)) {

47 if (!excluded.contains(neighbour) && !included.contains(neighbour)) {

48 if (!(stayInLayer && ipf.getZ(region) != firstZ) &&

toConsider.add(neighbour))↪→

49 toConsiderQueue.enqueue(neighbour)

50 }

51 }

52 }

53

54 /**

55 * Seed our selection with a starting region corresponding to the region at a

given coordinate in a given layer↪→

56 * of the IPF.

57 * @param x the x coordinate of our seed

58 * @param y the y coordinate of our seed

59 * @param z the z coordinate of our seed

60 * @param layer the layer of the IPF to start our selection in

61 */

62 def startPixel(x: Int, y: Int, z: Int, layer: Int): Unit = {

63 val startRegions: List[Int] = ipf.getRegionsInLayer(layer, x, y, z)

64 firstZ = z

65 for (region <- startRegions)

66 includeRegion(region)

67 }

68

69 /**

70 * Exclude a region from our selection, preventing it from being considered

again. This is necessary to avoid↪→

71 * infinitely looping if there is a cycle of regions we do not wish to

include.↪→

72 * @param region the region to exclude

73 */

74 def excludeRegion(region: Int): Unit = {

75 excluded += region

76 }

77

78 /**
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79 * Get the result of the segmentation corresponding to this selection.

80 * @return the result of the segmentation corresponding to this selection

81 */

82 def getResult: SegmentationResult = {

83 val status: Array[Array[Array[Boolean]]] = Array.ofDim(width, height, depth)

84 for ((x, y, z) <- included.flatMap(region => ipf.getRegionPixels(region)))

85 status(x)(y)(z) = true

86 new SegmentationResult(status)

87 }

88

89 }

B.5.4 RLSegmentation.scala

1 package org.edoardo.segmentation

2

3 import java.io.File

4

5 import ij.IJ

6 import ij.io.{FileSaver, Opener}

7 import ij.plugin.FolderOpener

8 import org.edoardo.image.{Raw, WindowedImage}

9 import org.edoardo.parser.{IPF, MFS, VolumeIPF}

10 import org.edoardo.rl.Policy

11

12 import scala.collection.mutable

13

14 /**

15 * Contains the main code for running the segmentation algorithm.

16 */

17 object RLSegmentation {

18 val policy = new Policy[Decision, RegionInfo]

19 val opener = new Opener()

20 val regionInfoCache: mutable.Map[Int, RegionInfo] = mutable.Map.empty

21 var epsilonReciprocal = 10

22

23 def experimentFive(): Unit = {

24

25 val imageInfos = List(

26 // Training data

27 ImageInfo(4, "image-004.mhd", 66, (100, 100, 66), (416, 781)),

28 ImageInfo(15, "image-015.mhd", 70, (150, 100, 70), (251, 492)),

29 ImageInfo(41, "image-041.mhd", 59, (100, 140, 59), (79, 150)),

30 ImageInfo(42, "image-042.mhd", 61, (100, 100, 61), (492, 985)),

31 ImageInfo(50, "image-050.mhd", 64, (100, 100, 64), (64, 128)),

32 //

33 // // Evaluation data

34 ImageInfo(39, "image-039.mhd", 69, (100, 100, 69), (64, 127)),

35 ImageInfo(46, "image-046.mhd", 69, (100, 100, 69), (870, 1493))

36 // ImageInfo(52, "image-052.mhd", 83, (100, 100, 0), (162, 321)),

37 // ImageInfo(54, "image-054.mhd", 75, (100, 100, 0), (598, 1013)),

38 // ImageInfo(60, "image-060.mhd", 76, (100, 100, 0), (415, 830))

39 )

40 println("-- Before Training --")

41 for (imageInfo <- imageInfos)

42 doImage(imageInfo.fileName, "image" + imageInfo.id + ".ipf",
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43 "preTraining-" + imageInfo.id, imageInfo.seed, imageInfo.windowing,

44 Some("labels-%03d.mhd".format(imageInfo.id.toInt)), -1, 0, saveAsRaw =

false)↪→

45

46 println("-- Training --")

47 for (imageInfo <- imageInfos.take(5))

48 doImage(imageInfo.fileName, "image" + imageInfo.id + ".ipf",

49 "training-" + imageInfo.id, imageInfo.seed, imageInfo.windowing,

50 Some("labels-%03d.mhd".format(imageInfo.id.toInt)), -1, 40, saveAsRaw =

false)↪→

51

52 println("-- After Training --")

53 for (imageInfo <- imageInfos)

54 doImage(imageInfo.fileName, "image" + imageInfo.id + ".ipf",

55 "postTraining-" + imageInfo.id, imageInfo.seed, imageInfo.windowing,

56 Some("labels-%03d.mhd".format(imageInfo.id.toInt)), -1, 0, saveAsRaw =

false)↪→

57 }

58

59 /**

60 * Main method to run our segmentation algorithm.

61 *

62 * @param args A number between one and three containing the number of the

experiment to run.↪→

63 */

64 def main(args: Array[String]): Unit = {

65 if (args(0) == "1")

66 experiementOne()

67 else if (args(0) == "2")

68 experiementTwo()

69 else if (args(0) == "3")

70 experimentThree()

71 else if (args(0) == "4")

72 experiementFour()

73 else

74 experimentFive()

75 }

76

77 /**

78 * The first experiment we ran on MRI scans from the Botnar Research Centre.

79 */

80 def experiementOne(): Unit = {

81 val imageInfos = List(

82 // Training data

83 ImageInfo(1, "Knee1/Knee1_0009.dcm", 10, (200, 200, 0), (1214, 2408)),

84 ImageInfo(10, "Knee10/Knee10_0009.dcm", 10, (200, 200, 0), (1050, 2050)),

85 ImageInfo(11, "Knee11/Knee11_0009.dcm", 9, (200, 200, 0), (1100, 2200)),

86 ImageInfo(12, "Knee12/Knee12_0009.dcm", 10, (200, 200, 0), (1050, 2050)),

87 ImageInfo(13, "Knee13/Knee13_0010.dcm", 10, (200, 200, 0), (1050, 2050)),

88

89 // Evaluation data

90 ImageInfo(2, "Knee2/Knee2_0006.dcm", 6, (200, 150, 0), (1325, 1604)),

91 ImageInfo(3, "Knee3/Knee3_0010.dcm", 11, (200, 200, 0), (1126, 2231)),

92 ImageInfo(5, "Knee5/Knee5_0008.dcm", 9, (200, 200, 0), (1275, 2500)),

93 ImageInfo(6, "Knee6/Knee6_0010.dcm", 11, (200, 200, 0), (1200, 2400)),
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94 ImageInfo(7, "Knee7/Knee7_0010.dcm", 11, (200, 150, 0), (1050, 2050))

95 )

96 println("-- Before Training --")

97 for (imageInfo <- imageInfos)

98 doImage(imageInfo.fileName, "knee" + imageInfo.id + "-layer" +

imageInfo.layer + ".ipf",↪→

99 "preTraining-" + imageInfo.id, imageInfo.seed, imageInfo.windowing,

100 Some("knee" + imageInfo.id + "-layer" + imageInfo.layer + ".mfs"),

imageInfo.layer, 0, saveAsRaw = false)↪→

101

102 println("-- Training --")

103 for (imageInfo <- imageInfos.take(5))

104 doImage(imageInfo.fileName, "knee" + imageInfo.id + "-layer" +

imageInfo.layer + ".ipf",↪→

105 "training-" + imageInfo.id, imageInfo.seed, imageInfo.windowing,

106 Some("knee" + imageInfo.id + "-layer" + imageInfo.layer + ".mfs"),

imageInfo.layer, 40, saveAsRaw = false)↪→

107

108 // printPolicy()

109

110 println("-- After Training --")

111 for (imageInfo <- imageInfos)

112 doImage(imageInfo.fileName, "knee" + imageInfo.id + "-layer" +

imageInfo.layer + ".ipf",↪→

113 "postTraining-" + imageInfo.id, imageInfo.seed, imageInfo.windowing,

114 Some("knee" + imageInfo.id + "-layer" + imageInfo.layer + ".mfs"),

imageInfo.layer, 0, saveAsRaw = false)↪→

115 }

116

117 /**

118 * The second experiment we ran on MRI scans from SKI10 grand challenge.

119 */

120 def experiementTwo(): Unit = {

121 val imageInfos = List(

122 // Training data

123 ImageInfo(4, "image-004.mhd", 66, (100, 100, 0), (416, 781)),

124 ImageInfo(15, "image-015.mhd", 70, (150, 100, 0), (251, 492)),

125 ImageInfo(41, "image-041.mhd", 59, (100, 140, 0), (79, 150)),

126 ImageInfo(42, "image-042.mhd", 61, (100, 100, 0), (492, 985)),

127 ImageInfo(50, "image-050.mhd", 64, (100, 100, 0), (64, 128)),

128

129 // Evaluation data

130 ImageInfo(39, "image-039.mhd", 69, (100, 100, 0), (64, 127)),

131 ImageInfo(46, "image-046.mhd", 69, (100, 100, 0), (870, 1493)),

132 ImageInfo(52, "image-052.mhd", 83, (100, 100, 0), (162, 321)),

133 ImageInfo(54, "image-054.mhd", 75, (100, 100, 0), (598, 1013)),

134 ImageInfo(60, "image-060.mhd", 76, (100, 100, 0), (415, 830))

135 )

136 println("-- Before Training --")

137 for (imageInfo <- imageInfos)

138 doImage(imageInfo.fileName, "image" + imageInfo.id + "-layer" +

imageInfo.layer + ".ipf",↪→

139 "preTraining-" + imageInfo.id, imageInfo.seed, imageInfo.windowing,

140 Some("labels-%03d.mhd".format(imageInfo.id.toInt)), imageInfo.layer, 0,

saveAsRaw = false)↪→
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141

142 println("-- Training --")

143 for (imageInfo <- imageInfos.take(5))

144 doImage(imageInfo.fileName, "image" + imageInfo.id + "-layer" +

imageInfo.layer + ".ipf",↪→

145 "training-" + imageInfo.id, imageInfo.seed, imageInfo.windowing,

146 Some("labels-%03d.mhd".format(imageInfo.id.toInt)), imageInfo.layer, 40,

saveAsRaw = false)↪→

147

148 println("-- After Training --")

149 for (imageInfo <- imageInfos)

150 doImage(imageInfo.fileName, "image" + imageInfo.id + "-layer" +

imageInfo.layer + ".ipf",↪→

151 "postTraining-" + imageInfo.id, imageInfo.seed, imageInfo.windowing,

152 Some("labels-%03d.mhd".format(imageInfo.id.toInt)), imageInfo.layer, 0,

saveAsRaw = false)↪→

153 }

154

155 /**

156 * The third experiment we ran on XRay images.

157 */

158 def experimentThree(): Unit = {

159 val xrayInfos = List(

160 XRayInfo(2, "knee2.mfs", (135, 250, 0)),

161 XRayInfo(3, "knee3-gt.pgm", (135, 237, 0)),

162 XRayInfo(1, "knee1-gt.pgm", (264, 579, 0))

163 )

164 println("-- Before Training --")

165 for (xrayInfo <- xrayInfos)

166 doImage("knee" + xrayInfo.id + ".pgm", "knee" + xrayInfo.id + ".ipf",

"preTraining-" + xrayInfo.id,↪→

167 xrayInfo.seed, (127, 255), Some(xrayInfo.gt), 0, 0, saveAsRaw = false)

168

169 println("-- Training --")

170 for (xrayInfo <- xrayInfos.take(2))

171 doImage("knee" + xrayInfo.id + ".pgm", "knee" + xrayInfo.id + ".ipf",

"training-" + xrayInfo.id,↪→

172 xrayInfo.seed, (127, 255), Some(xrayInfo.gt), 0, 40, saveAsRaw = false)

173

174 println("-- After Training --")

175 for (xrayInfo <- xrayInfos)

176 doImage("knee" + xrayInfo.id + ".pgm", "knee" + xrayInfo.id + ".ipf",

"postTraining-" + xrayInfo.id,↪→

177 xrayInfo.seed, (127, 255), Some(xrayInfo.gt), 0, 0, saveAsRaw = false)

178 }

179

180 /**

181 * The fourth experiment we ran to see the effect of changing epsilon.

182 */

183 def experiementFour(): Unit = {

184 val imageInfos = List(

185 // Training data

186 ImageInfo(1, "Knee1/Knee1_0009.dcm", 10, (200, 200, 0), (1214, 2408)),

187 ImageInfo(10, "Knee10/Knee10_0009.dcm", 10, (200, 200, 0), (1050, 2050)),

188 ImageInfo(11, "Knee11/Knee11_0009.dcm", 9, (200, 200, 0), (1100, 2200)),
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189 ImageInfo(12, "Knee12/Knee12_0009.dcm", 10, (200, 200, 0), (1050, 2050)),

190 ImageInfo(13, "Knee13/Knee13_0010.dcm", 10, (200, 200, 0), (1050, 2050)),

191

192 // Evaluation data

193 ImageInfo(2, "Knee2/Knee2_0006.dcm", 6, (200, 150, 0), (1325, 1604)),

194 ImageInfo(3, "Knee3/Knee3_0010.dcm", 11, (200, 200, 0), (1126, 2231)),

195 ImageInfo(5, "Knee5/Knee5_0008.dcm", 9, (200, 200, 0), (1275, 2500)),

196 ImageInfo(6, "Knee6/Knee6_0010.dcm", 11, (200, 200, 0), (1200, 2400)),

197 ImageInfo(7, "Knee7/Knee7_0010.dcm", 11, (200, 150, 0), (1050, 2050))

198 )

199 val repeats = 10

200 var resultString = ""

201 for (epsilon <- List(2, 5, 10, 20, 40, 100)) {

202 for (numRuns <- List(2, 5, 10, 20, 40, 100)) {

203 var results: List[Float] = List()

204 for (i <- 0 until repeats) {

205 epsilonReciprocal = epsilon

206 println("-- Training --")

207 for (imageInfo <- imageInfos.take(5))

208 doImage(imageInfo.fileName, "knee" + imageInfo.id + "-layer" +

imageInfo.layer + ".ipf",↪→

209 "training-" + imageInfo.id, imageInfo.seed, imageInfo.windowing,

210 Some("knee" + imageInfo.id + "-layer" + imageInfo.layer + ".mfs"),

imageInfo.layer, numRuns, saveAsRaw = false)↪→

211

212 println("-- After Training " + numRuns + " Runs with epsilon = 1/" +

epsilonReciprocal + " (Repeat " + i + ")--")↪→

213 var runResults: List[Float] = List()

214 for (imageInfo <- imageInfos.drop(5))

215 runResults ::= doImage(imageInfo.fileName, "knee" + imageInfo.id +

"-layer" + imageInfo.layer + ".ipf",↪→

216 "postTraining-" + imageInfo.id, imageInfo.seed,

imageInfo.windowing,↪→

217 Some("knee" + imageInfo.id + "-layer" + imageInfo.layer + ".mfs"),

imageInfo.layer, 0, saveAsRaw = false)↪→

218 results ::= runResults.sum / 5

219 policy.clear()

220 }

221 resultString += results.sum / repeats + "\t"

222 }

223 resultString = resultString.dropRight(1) + "\n"

224 }

225 println("-- Average Results --")

226 println(resultString)

227 }

228

229 /**

230 * Apply our algorithm to an image.

231 *

232 * @param name the name of the file (or folder) the image (or

layers of the image) can be found in↪→

233 * @param ipfName the name of the file containing the IPF for the

image↪→

234 * @param resultName the name of the result file to store the

segmentation result in, should end in .tiff↪→
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235 * @param seed the seed point to begin growing the region from

236 * @param windowing the windowing to use, in the form of a pair of

(centre, width)↪→

237 * @param gtName the name of the file containing the gold standard

to compare with (and learn from, if applicable)↪→

238 * @param stayInLayer the layer to explore in (-1 to explore the whole

image)↪→

239 * @param numPracticeRuns the number of times to practice on this image (0 to

not train on this image)↪→

240 * @param saveAsRaw whether to save the image as RAW (will be saved as

TIFF otherwise)↪→

241 * @return the DSC of the segmentation after training (-1 if no gold standard

was provided)↪→

242 */

243 def doImage(name: String, ipfName: String, resultName: String, seed: (Int,

Int, Int), windowing: (Int, Int) = (0, 0),↪→

244 gtName: Option[String] = None, stayInLayer: Integer = -1,

numPracticeRuns: Int = 40, saveAsRaw: Boolean): Float = {↪→

245 val img: WindowedImage = new WindowedImage(

246 if (name.takeRight(3) == "mhd")

247 Raw.openMetadata(name, stayInLayer)

248 else if (new File(name).isDirectory)

249 new FolderOpener().openFolder(name)

250 else IJ.openImage(name), windowing)

251 new FileSaver(img.image).saveAsTiff(resultName + "-original.tiff")

252 val ipf: VolumeIPF = IPF.loadFromFile(ipfName)

253 val gt: Option[SegmentationResult] = gtName.map(name =>

254 if (name.takeRight(3) == "mfs")

255 MFS.loadFromFile(name, ipf)

256 else

257 new WindowedImage(

258 if (name.takeRight(3) == "mhd")

259 Raw.openLabels(name)

260 else opener.openImage(name)

261 ).toSegmentationResult(stayInLayer))

262 if (gt.isDefined)

263 gt.get.writeTo(resultName + "-gt", saveAsRaw)

264 img.doPreProcess()

265 if (gt.isDefined) {

266 for (i <- 0 until numPracticeRuns) {

267 val result: SegmentationResult = analyseImage(img, ipf, gt, seed,

stayInLayer != -1)↪→

268 println(name + "\t" + i + "\t" + score(result, gt.get))

269 result.writeTo(resultName + "-" + i, saveAsRaw)

270 }

271 }

272 val result: SegmentationResult = analyseImage(img, ipf, None, seed,

stayInLayer != -1)↪→

273 var dsc: Float = -1

274 if (gt.isDefined) {

275 val scoreString: String = score(result, gt.get)

276 println(name + "\tfin\t" + scoreString)

277 dsc = scoreString.takeWhile(x => x != ’\t’).toFloat

278 }

279 result.writeTo(resultName, saveAsRaw)
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280 regionInfoCache.clear()

281 dsc

282 }

283

284 /**

285 * Get the information for a given region from the first branch layer of the

IPF.↪→

286 *

287 * @param region the identifier for the region

288 * @param ipf the IPF of the image we are considering

289 * @param img the image we are considering

290 * @return the information to be used by the agent to decide whether or not

to include this region↪→

291 */

292 def getInfo(region: Int, ipf: VolumeIPF, img: WindowedImage): RegionInfo = {

293 regionInfoCache.getOrElseUpdate(region, {

294 val pixels: List[(Int, Int, Int)] = ipf.getRegionPixels(region)

295 val avgIntensity: Int = pixels.map(p => img.getVoxel(p._1, p._2,

p._3)).sum / pixels.size↪→

296 // val minIntensity: Int = pixels.map(p => img.getVoxel(p._1, p._2,

p._3)).min↪→

297 // val maxIntensity: Int = pixels.map(p => img.getVoxel(p._1, p._2,

p._3)).max↪→

298 // val avgGradient: Int = pixels.map(p => img.getGradient(p._1, p._2,

p._3)).sum / pixels.size↪→

299 val maxGradient: Int = pixels.map(p => img.getGradient(p._1, p._2,

p._3)).max↪→

300 RegionInfo(List(avgIntensity, maxGradient))

301 })

302 }

303

304 /**

305 * Analyse the given image.

306 *

307 * @param img the image to analyse

308 * @param ipf the IPF for the image

309 * @param gt the gold standard to compare to, if applicable

310 * @param seed the seed point to grow from

311 * @param stayInLayer whether or not to remain in the same layer

312 * @return the result of segmenting the image

313 */

314 def analyseImage(img: WindowedImage, ipf: VolumeIPF, gt:

Option[SegmentationResult], seed: (Int, Int, Int),↪→

315 stayInLayer: Boolean): SegmentationResult = {

316 if (gt.isDefined)

317 assert(img.width == gt.get.width && img.height == gt.get.height &&

img.depth == gt.get.depth)↪→

318 val selection = new Selection(img.height, img.width, img.depth, ipf,

stayInLayer)↪→

319 var decisions: List[(RegionInfo, Int, Decision)] = List()

320 selection.startPixel(seed._1, seed._2, seed._3, if (gt.isDefined) 2 else 2)

321 while (!selection.completed()) {

322 val region: Int = selection.getRegion

323 val state: RegionInfo = getInfo(region, ipf, img)

324 val decision: Decision =
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325 if (gt.isEmpty) policy.greedyPlay(state)

326 else policy.epsilonSoft(state, epsilonReciprocal)

327 decisions ::= (state, region, decision)

328 if (decision.include)

329 selection.includeRegion(region)

330 else

331 selection.excludeRegion(region)

332 }

333 if (gt.isDefined)

334 decisions.foreach {

335 case (state, region, dec) =>

336 policy.update(state, dec, reward(region, dec.include, ipf, gt))

337 }

338 val result: SegmentationResult = selection.getResult

339 result.closeResult()

340 result

341 }

342

343 /**

344 * Calculates the reward to give our agent for deciding to include or exclude

a given region.↪→

345 *

346 * @param region the region considered

347 * @param decision whether or not the agent chose to include it

348 * @param ipf the IPF for the

349 * @param gt the gold standard we are comparing against (this function

will return constant 0 if this is None)↪→

350 * @return a value corresponding to how many more pixels the decision was

correct for (so, this will be a positive↪→

351 * value if the correct decision was made, and negative otherwise)

352 */

353 def reward(region: Int, decision: Boolean, ipf: VolumeIPF, gt:

Option[SegmentationResult]): Int = {↪→

354 if (gt.isEmpty) return 0

355 val pixels: List[(Int, Int, Int)] = ipf.getRegionPixels(region)

356 var reward: Int = 0

357 for ((x, y, z) <- pixels)

358 reward += (if (gt.get.doesContain(x, y, z)) 1 else -1)

359 if (decision) reward

360 else -reward

361 }

362

363 /**

364 * Create a string containing the scores of a segmentation compared to a gold

standard.↪→

365 *

366 * @param result the result of a segmentation

367 * @param gt the gold standard we are comparing against

368 * @return A tab separated String of values consisting of the DSC, TPVF and

FPVF of the segmentation.↪→

369 */

370 def score(result: SegmentationResult, gt: SegmentationResult): String = {

371 var overlap = 0

372 var resultSize = 0

373 var gtSize = 0
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374 var falsePositive = 0

375 val imageSize: Int = gt.height * gt.width * gt.depth

376 for (x <- 0 until result.width; y <- 0 until result.height; z <- 0 until

result.depth) {↪→

377 if (result.doesContain(x, y, z) && gt.doesContain(x, y, z)) overlap += 1

378 if (result.doesContain(x, y, z)) resultSize += 1

379 if (gt.doesContain(x, y, z)) gtSize += 1

380 if (result.doesContain(x, y, z) && !gt.doesContain(x, y, z)) falsePositive

+= 1↪→

381 }

382 (2f * overlap) / (gtSize + resultSize) + "\t" +

383 overlap.toFloat / gtSize + "\t" +

384 falsePositive.toFloat / (imageSize - gtSize)

385 }

386

387 /**

388 * Prints out the current policy (ie. what the agent believes to be the best

action in every state).↪→

389 */

390 def printPolicy(): Unit = {

391 println("-- Policy Learnt --")

392 for (x <- 0 to 255) {

393 for (y <- 0 to 255)

394 print((if (!policy.haveEncountered(RegionInfo(List(x, y)))) 0

395 else if (policy.greedyPlay(RegionInfo(List(x, y))).include) 1

396 else -1) + "\t")

397 println()

398 }

399 printPercentageSeen()

400 }

401

402 /**

403 * Prints out the percentage of theoretically possible states actually

encountered.↪→

404 */

405 def printPercentageSeen(): Unit = {

406 var total = 0

407 var seen = 0

408 for (x <- 0 to 255; y <- 0 to 255) {

409 total += 1

410 if (policy.haveEncountered(RegionInfo(List(x, y))))

411 seen += 1

412 }

413 println("Percentage of states seen: " + 100 * (seen.toFloat / total))

414 }

415

416 private case class ImageInfo(id: Integer, fileName: String, layer: Integer,

seed: (Int, Int, Int), windowing: (Int, Int))↪→

417

418 private case class XRayInfo(id: Integer, gt: String, seed: (Int, Int, Int))

419

420 }
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